
Algorithms

Amortized Analysis

Review: Running Time of

Kruskal’s Algorithm

● Expensive operations:

■ Sort edges: O(E lg E)

■ O(V) MakeSet()’s

■ O(E) FindSet()’s

■ O(V) Union()’s
● Upshot:

■ Comes down to efficiency of disjoint-set

operations, particularly Union()

Review: Disjoint Set Union

● So how do we represent disjoint sets?

■ Naïve implementation: use a linked list to

represent elements, with pointers back to set:

○ MakeSet(): O(1)

○ FindSet(): O(1)

○ Union(A,B): “Copy” elements of A into set B by
adjusting elements of A to point to B: O(A)

■ How long could n Union()s take?

Review:

Disjoint Set Union Analysis

● Worst-case analysis: O(n2) time for n Union’s
Union(S1, S2) “copy” 1 element

Union(S2, S3) “copy” 2 elements

…

Union(Sn-1, Sn) “copy” n-1 elements

 O(n2)

● Improvement: always copy smaller into larger

■ How long would above sequence of Union’s take?

■ Worst case: n Union’s take O(n lg n) time

■ Proof uses amortized analysis

Review:

Amortized Analysis of Disjoint Sets

● If elements are copied from the smaller set into

the larger set, an element can be copied at most

lg n times

■ Worst case: Each time copied, element in smaller set

1st time resulting set size  2

2nd time  4

…

(lg n)th time  n

Review:

Amortized Analysis of Disjoint Sets

● Since we have n elements each copied at most

lg n times, n Union()’s takes O(n lg n) time

● Therefore we say the amortized cost of a

Union() operation is O(lg n)

● This is the aggregate method of amortized

analysis:

■ n operations take time T(n)

■ Average cost of an operation = T(n)/n

Amortized Analysis:

Accounting Method

● Accounting method

■ Charge each operation an amortized cost

■ Amount not used stored in “bank”

■ Later operations can used stored money

■ Balance must not go negative

● Book also discusses potential method

■ But we won’t worry about it here

Accounting Method Example:

Dynamic Tables

● Implementing a table (e.g., hash table) for

dynamic data, want to make it small as possible

● Problem: if too many items inserted, table may

be too small

● Idea: allocate more memory as needed

Dynamic Tables

1. Init table size m = 1

2. Insert elements until number n > m

3. Generate new table of size 2m

4. Reinsert old elements into new table

5. (back to step 2)

● What is the worst-case cost of an insert?

● One insert can be costly, but the total?

Analysis Of Dynamic Tables

● Let ci = cost of ith insert

● ci = i if i-1 is exact power of 2, 1 otherwise

● Example:

■ Operation Table Size Cost
Insert(1) 1 1 1

Analysis Of Dynamic Tables

● Let ci = cost of ith insert

● ci = i if i-1 is exact power of 2, 1 otherwise

● Example:

■ Operation Table Size Cost
Insert(1) 1 1 1

Insert(2) 2 1 + 1 2

Analysis Of Dynamic Tables

● Let ci = cost of ith insert

● ci = i if i-1 is exact power of 2, 1 otherwise

● Example:

■ Operation Table Size Cost
Insert(1) 1 1 1

Insert(2) 2 1 + 1 2

Insert(3) 4 1 + 2 3

Analysis Of Dynamic Tables

● Let ci = cost of ith insert

● ci = i if i-1 is exact power of 2, 1 otherwise

● Example:

■ Operation Table Size Cost
Insert(1) 1 1 1

Insert(2) 2 1 + 1 2

Insert(3) 4 1 + 2 3

Insert(4) 4 1 4

Analysis Of Dynamic Tables

● Let ci = cost of ith insert

● ci = i if i-1 is exact power of 2, 1 otherwise

● Example:

■ Operation Table Size Cost
Insert(1) 1 1 1

Insert(2) 2 1 + 1 2

Insert(3) 4 1 + 2 3

Insert(4) 4 1 4

Insert(5) 8 1 + 4 5

Analysis Of Dynamic Tables

● Let ci = cost of ith insert

● ci = i if i-1 is exact power of 2, 1 otherwise

● Example:

■ Operation Table Size Cost
Insert(1) 1 1 1

Insert(2) 2 1 + 1 2

Insert(3) 4 1 + 2 3

Insert(4) 4 1 4

Insert(5) 8 1 + 4 5

Insert(6) 8 1 6

Analysis Of Dynamic Tables

● Let ci = cost of ith insert

● ci = i if i-1 is exact power of 2, 1 otherwise

● Example:

■ Operation Table Size Cost
Insert(1) 1 1 1

Insert(2) 2 1 + 1 2

Insert(3) 4 1 + 2 3

Insert(4) 4 1 4

Insert(5) 8 1 + 4 5

Insert(6) 8 1 6

Insert(7) 8 1 7

Analysis Of Dynamic Tables

● Let ci = cost of ith insert

● ci = i if i-1 is exact power of 2, 1 otherwise

● Example:

■ Operation Table Size Cost
Insert(1) 1 1 1

Insert(2) 2 1 + 1 2

Insert(3) 4 1 + 2 3

Insert(4) 4 1 4

Insert(5) 8 1 + 4 5

Insert(6) 8 1 6

Insert(7) 8 1 7

Insert(8) 8 1 8

Analysis Of Dynamic Tables

● Let ci = cost of ith insert

● ci = i if i-1 is exact power of 2, 1 otherwise

● Example:

■ Operation Table Size Cost
Insert(1) 1 1 1

Insert(2) 2 1 + 1 2

Insert(3) 4 1 + 2

Insert(4) 4 1

Insert(5) 8 1 + 4

Insert(6) 8 1

Insert(7) 8 1

Insert(8) 8 1

Insert(9) 16 1 + 8

1

2

3

4

5

6

7

8

9

Aggregate Analysis

● n Insert() operations cost

● Average cost of operation

= (total cost)/(# operations) < 3

● Asymptotically, then, a dynamic table costs the

same as a fixed-size table

■ Both O(1) per Insert operation

nnnnc
n

j

j
n

i

i 3)12(2
lg

01

 


Accounting Analysis

● Charge each operation $3 amortized cost

■ Use $1 to perform immediate Insert()

■ Store $2

● When table doubles

■ $1 reinserts old item, $1 reinserts another old item

■ Point is, we’ve already paid these costs

■ Upshot: constant (amortized) cost per operation

Disjoint Set Union

● So how do we implement disjoint-set union?

■ Naïve implementation: use a linked list to

represent each set:

○ MakeSet(): ??? time

○ FindSet(): ??? time

○ Union(A,B): “copy” elements of A into B: ??? time

Disjoint Set Union

● So how do we implement disjoint-set union?

■ Naïve implementation: use a linked list to

represent each set:

○ MakeSet(): O(1) time

○ FindSet(): O(1) time

○ Union(A,B): “copy” elements of A into B: O(A) time

■ How long can a single Union() take?

■ How long will n Union()’s take?

Disjoint Set Union: Analysis

● Worst-case analysis: O(n2) time for n Union’s
Union(S1, S2) “copy” 1 element

Union(S2, S3) “copy” 2 elements

…

Union(Sn-1, Sn) “copy” n-1 elements

 O(n2)

● Improvement: always copy smaller into larger

■ Why will this make things better?

■ What is the worst-case time of Union()?

● But now n Union’s take only O(n lg n) time!

Amortized Analysis of Disjoint Sets

● Amortized analysis computes average times

without using probability

● With our new Union(), any individual element is

copied at most lg n times when forming the

complete set from 1-element sets

■ Worst case: Each time copied, element in smaller set

1st time resulting set size  2

2nd time  4

…

(lg n)th time  n

Amortized Analysis of Disjoint Sets

● Since we have n elements each copied at most

lg n times, n Union()’s takes O(n lg n) time

● We say that each Union() takes O(lg n)

amortized time

■ Financial term: imagine paying $(lg n) per Union

■ At first we are overpaying; initial Union $O(1)

■ But we accumulate enough $ in bank to pay for

later expensive O(n) operation.

■ Important: amount in bank never goes negative

