Algorithms

Amortized Analysis

Review: Running Time of Kruskal's Algorithm

- Expensive operations:
- Sort edges: O(E lg E)
- O(V) MakeSet()'s
- O(E) FindSet()'s
- O(V) Union()'s
- Upshot:
- Comes down to efficiency of disjoint-set operations, particularly Union()

Review: Disjoint Set Union

- So how do we represent disjoint sets?
- Naïve implementation: use a linked list to represent elements, with pointers back to set:

Review: Disjoint Set Union Analysis

- Worst-case analysis: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time for n Union's

$\operatorname{Union}\left(S_{1}, S_{2}\right)$	$" c o p y "$	1 element
$\operatorname{Union}\left(S_{2}, S_{3}\right)$	"copy"	2 elements

$\underline{\operatorname{Union}\left(S_{\underline{n}-1}, S_{\underline{n}}\right)} \quad$ "copy" \quad n-1 elements

- Improvement: always copy smaller into larger
- How long would above sequence of Union's take?
- Worst case: n Union's take O(n $\lg \mathrm{n})$ time
- Proof uses amortized analysis

Review:

Amortized Analysis of Disjoint Sets

- If elements are copied from the smaller set into the larger set, an element can be copied at most $\lg n$ times
- Worst case: Each time copied, element in smaller set

1st time	resulting set size
2nd time	
≥ 2	
	≥ 4

$(\lg \mathrm{n})$ th time $\quad \geq \mathrm{n}$

Review:

Amortized Analysis of Disjoint Sets

- Since we have n elements each copied at most $\lg \mathrm{n}$ times, n Union()'s takes $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ time
- Therefore we say the amortized cost of a Union() operation is $\mathrm{O}(\lg \mathrm{n})$
- This is the aggregate method of amortized analysis:
- n operations take time $\mathrm{T}(\mathrm{n})$
- Average cost of an operation $=T(n) / n$

Amortized Analysis: Accounting Method

- Accounting method
- Charge each operation an amortized cost
- Amount not used stored in "bank"
- Later operations can used stored money
- Balance must not go negative
- Book also discusses potential method
- But we won't worry about it here

Accounting Method Example: Dynamic Tables

- Implementing a table (e.g., hash table) for dynamic data, want to make it small as possible
- Problem: if too many items inserted, table may be too small
- Idea: allocate more memory as needed

Dynamic Tables

1. Init table size $m=1$
2. Insert elements until number $n>m$
3. Generate new table of size $2 m$
4. Reinsert old elements into new table
5. (back to step 2)

- What is the worst-case cost of an insert?
- One insert can be costly, but the total?

Analysis Of Dynamic Tables

- Let $\mathrm{c}_{\mathrm{i}}=$ cost of i th insert
- $\mathrm{c}_{\mathrm{i}}=i$ if $\mathrm{i}-1$ is exact power of 2,1 otherwise
- Example:
$\begin{array}{rcc}\text { - Operation } & \text { Table Size } & \text { Cost } \\ \text { Insert(1) } & 1 & 1\end{array}$

Analysis Of Dynamic Tables

- Let $\mathrm{c}_{\mathrm{i}}=$ cost of i th insert
- $\mathrm{c}_{\mathrm{i}}=i$ if $\mathrm{i}-1$ is exact power of 2,1 otherwise
- Example:
$\begin{array}{ccl}\text { - Operation } & \text { Table Size } & \text { Cost } \\ \text { Insert(1) } & 1 & 1 \\ \text { Insert(2) } & 2 & 1+1\end{array}$

1
2

Analysis Of Dynamic Tables

- Let $\mathrm{c}_{\mathrm{i}}=$ cost of i th insert
- $\mathrm{c}_{\mathrm{i}}=i$ if $\mathrm{i}-1$ is exact power of 2,1 otherwise
- Example:
$\begin{array}{ccl}\text { ■ Operation } & \text { Table Size } & \text { Cost } \\ \text { Insert (1) } & 1 & 1 \\ \text { Insert (2) } & 2 & 1+1 \\ \text { Insert(3) } & 4 & 1+2\end{array}$

Analysis Of Dynamic Tables

- Let $\mathrm{c}_{\mathrm{i}}=$ cost of i th insert
- $\mathrm{c}_{\mathrm{i}}=i$ if $\mathrm{i}-1$ is exact power of 2,1 otherwise
- Example:
- Operation Insert(1)
Insert(2)
Insert(3)
Insert(4)

Table Size	Cost
1	1
2	$1+1$
4	$1+2$
4	1

1
2
3
4

Analysis Of Dynamic Tables

- Let $\mathrm{c}_{\mathrm{i}}=$ cost of i th insert
- $\mathrm{c}_{\mathrm{i}}=i$ if $\mathrm{i}-1$ is exact power of 2,1 otherwise
- Example:
- Operation
Insert(1)
Insert(2)
Insert (3)
Insert(4)
Insert(5)

Table Size	Cost
1	1
2	$1+1$
4	$1+2$
4	1
8	$1+4$

1
2
3
4
5

Analysis Of Dynamic Tables

- Let $\mathrm{c}_{\mathrm{i}}=$ cost of i th insert
- $\mathrm{c}_{\mathrm{i}}=i$ if $\mathrm{i}-1$ is exact power of 2,1 otherwise
- Example:
- Operation
Insert(1)
Insert (2)
Insert(3)
Insert(4)
Insert(5)
Insert(6)

Table Size	Cost
1	1
2	$1+1$
4	$1+2$
4	1
8	$1+4$
8	1

1
2
3
4
5
6

Analysis Of Dynamic Tables

- Let $\mathrm{c}_{\mathrm{i}}=$ cost of i th insert
- $\mathrm{c}_{\mathrm{i}}=i$ if $\mathrm{i}-1$ is exact power of 2,1 otherwise
- Example:
- Operation
Insert(1)
Insert(2)
Insert(3)
Insert(4)
Insert(5)
Insert(6)
Insert(7)

Table Size	Cost
1	1
2	$1+1$
4	$1+2$
4	1
8	$1+4$
8	1
8	1

1
2
3
4
5
6
7

Analysis Of Dynamic Tables

- Let $\mathrm{c}_{\mathrm{i}}=$ cost of i th insert
- $\mathrm{c}_{\mathrm{i}}=i$ if $\mathrm{i}-1$ is exact power of 2,1 otherwise
- Example:
- Operation Insert (1)
Insert (2)
Insert (3)
Insert(4)
Insert(5)
Insert(6)
Insert(7)
Insert (8)

Table Size	Cost
1	1
2	$1+1$
4	$1+2$
4	1
8	$1+4$
8	1
8	1
8	1

1
2
3
4
5
6
7
8

Analysis Of Dynamic Tables

- Let $\mathrm{c}_{\mathrm{i}}=$ cost of i th insert
- $\mathrm{c}_{\mathrm{i}}=i$ if $\mathrm{i}-1$ is exact power of 2,1 otherwise
- Example:
- Operation Insert(1)
Insert(2)
Insert(3)
Insert(4)
Insert(5)
Insert(6)
Insert(7)
Insert(8)
Insert(9)

Table Size	Cost
1	1
2	$1+1$
4	$1+2$
4	1
8	$1+4$
8	1
8	1
8	1
16	$1+8$

1
2
3
4
5
6
7
8
9

Aggregate Analysis

- n Insert() operations cost
$\sum_{i=1}^{n} c_{i} \leq n+\sum_{j=0}^{\lg n} 2^{j}=n+(2 n-1)<3 n$
- Average cost of operation
$=($ total cost $) /(\#$ operations $)<3$
- Asymptotically, then, a dynamic table costs the same as a fixed-size table
- Both O(1) per Insert operation

Accounting Analysis

- Charge each operation $\$ 3$ amortized cost
- Use $\$ 1$ to perform immediate Insert()
- Store \$2
- When table doubles
- $\$ 1$ reinserts old item, $\$ 1$ reinserts another old item
- Point is, we've already paid these costs
- Upshot: constant (amortized) cost per operation

Disjoint Set Union

- So how do we implement disjoint-set union?
- Naïve implementation: use a linked list to represent each set:

- MakeSet(): ??? time
- FindSet(): ??? time
- Union(A,B): "copy" elements of A into B: ??? time

Disjoint Set Union

- So how do we implement disjoint-set union?
- Naïve implementation: use a linked list to represent each set:

- MakeSet(): O(1) time
- FindSet(): O(1) time
- Union(A,B): "copy" elements of A into B: O(A) time

■ How long can a single Union() take?
■ How long will n Union() 's take?

Disjoint Set Union: Analysis

- Worst-case analysis: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time for n Union's

$\operatorname{Union}\left(S_{1}, S_{2}\right)$	"copy"	1 element
$\operatorname{Union}\left(S_{2}, S_{3}\right)$	"copy"	2 elements

$\underline{\operatorname{Union}\left(S_{\underline{n}-1}, S_{\underline{n}}\right) \quad \text { "copy" }}$

- Improvement: always copy smaller into larger
- Why will this make things better?
- What is the worst-case time of Union()?
- But now n Union's take only $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ time!

Amortized Analysis of Disjoint Sets

- Amortized analysis computes average times without using probability
- With our new Union(), any individual element is copied at most $\lg n$ times when forming the complete set from 1-element sets
- Worst case: Each time copied, element in smaller set

1st time	resulting set size	≥ 2
2nd time		≥ 4

$(\lg \mathrm{n})$ th time
$\geq \mathrm{n}$

Amortized Analysis of Disjoint Sets

- Since we have n elements each copied at most $\lg \mathrm{n}$ times, n Union()'s takes $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ time
- We say that each Union() takes $\mathrm{O}(\lg \mathrm{n})$ amortized time
- Financial term: imagine paying $\$(\lg n)$ per Union
- At first we are overpaying; initial Union \$O(1)
- But we accumulate enough \$ in bank to pay for later expensive $\mathrm{O}(\mathrm{n})$ operation.
- Important: amount in bank never goes negative

