
Algorithms 

Amortized Analysis 



Review: Running Time of 

Kruskal’s Algorithm 

● Expensive operations:  

■ Sort edges: O(E lg E)  

■ O(V) MakeSet()’s 

■ O(E) FindSet()’s 

■ O(V) Union()’s  
● Upshot:  

■ Comes down to efficiency of disjoint-set 

operations, particularly Union() 



Review: Disjoint Set Union 

● So how do we represent disjoint sets? 

■ Naïve implementation: use a linked list to 

represent elements, with pointers back to set: 

 

 

○ MakeSet(): O(1) 

○ FindSet(): O(1) 

○ Union(A,B): “Copy” elements of A into set B by 
adjusting elements of A to point to B: O(A) 

■ How long could n Union()s take?  



Review:  

Disjoint Set Union Analysis 

● Worst-case analysis: O(n2) time for n Union’s 
Union(S1, S2)  “copy”  1 element 

Union(S2, S3)  “copy”  2 elements 

… 

Union(Sn-1, Sn) “copy”  n-1 elements 

      O(n2) 

● Improvement: always copy smaller into larger 

■ How long would above sequence of Union’s take? 

■ Worst case: n Union’s take O(n lg n) time 

■ Proof uses amortized analysis 



Review: 

Amortized Analysis of Disjoint Sets 

● If elements are copied from the smaller set into 

the larger set, an element can be copied at most 

lg n times 

■ Worst case: Each time copied, element in smaller set 

1st time resulting set size  2 

2nd time     4 

… 

(lg n)th time     n 



Review: 

Amortized Analysis of Disjoint Sets 

● Since we have n elements each copied at most 

lg n times, n Union()’s takes O(n lg n) time 

● Therefore we say the amortized cost of a 

Union() operation is O(lg n) 

● This is the aggregate method of amortized 

analysis: 

■ n operations take time T(n) 

■ Average cost of an operation = T(n)/n 



Amortized Analysis:  

Accounting Method 

● Accounting method 

■ Charge each operation an amortized cost 

■ Amount not used stored in “bank” 

■ Later operations can used stored money 

■ Balance must not go negative 

● Book also discusses potential method 

■ But we won’t worry about it here 



Accounting Method Example:  

Dynamic Tables 

● Implementing a table (e.g., hash table) for 

dynamic data, want to make it small as possible 

● Problem: if too many items inserted, table may 

be too small 

● Idea: allocate more memory as needed 



Dynamic Tables 

1. Init table size m = 1 

2. Insert elements until number n > m 

3. Generate new table of size 2m 

4. Reinsert old elements into new table 

5. (back to step 2) 

● What is the worst-case cost of an insert? 

● One insert can be costly, but the total? 



Analysis Of Dynamic Tables 

● Let ci = cost of ith insert 

● ci = i if i-1 is exact power of 2, 1 otherwise 

● Example: 

■ Operation Table Size    Cost 
Insert(1) 1 1 1 



Analysis Of Dynamic Tables 

● Let ci = cost of ith insert 

● ci = i if i-1 is exact power of 2, 1 otherwise 

● Example: 

■ Operation Table Size    Cost 
Insert(1) 1 1 1 

Insert(2) 2 1 + 1 2 



Analysis Of Dynamic Tables 

● Let ci = cost of ith insert 

● ci = i if i-1 is exact power of 2, 1 otherwise 

● Example: 

■ Operation Table Size    Cost 
Insert(1) 1 1 1 

Insert(2) 2 1 + 1 2 

Insert(3) 4 1 + 2 3 



Analysis Of Dynamic Tables 

● Let ci = cost of ith insert 

● ci = i if i-1 is exact power of 2, 1 otherwise 

● Example: 

■ Operation Table Size    Cost 
Insert(1) 1 1 1 

Insert(2) 2 1 + 1 2 

Insert(3) 4 1 + 2 3 

Insert(4) 4 1 4 



Analysis Of Dynamic Tables 

● Let ci = cost of ith insert 

● ci = i if i-1 is exact power of 2, 1 otherwise 

● Example: 

■ Operation Table Size    Cost 
Insert(1) 1 1 1 

Insert(2) 2 1 + 1 2 

Insert(3) 4 1 + 2 3 

Insert(4) 4 1 4 

Insert(5) 8 1 + 4 5 

  

  

  



Analysis Of Dynamic Tables 

● Let ci = cost of ith insert 

● ci = i if i-1 is exact power of 2, 1 otherwise 

● Example: 

■ Operation Table Size    Cost 
Insert(1) 1 1 1 

Insert(2) 2 1 + 1 2 

Insert(3) 4 1 + 2 3 

Insert(4) 4 1 4 

Insert(5) 8 1 + 4 5 

Insert(6) 8 1 6 

  

  



Analysis Of Dynamic Tables 

● Let ci = cost of ith insert 

● ci = i if i-1 is exact power of 2, 1 otherwise 

● Example: 

■ Operation Table Size    Cost 
Insert(1) 1 1 1 

Insert(2) 2 1 + 1 2 

Insert(3) 4 1 + 2 3 

Insert(4) 4 1 4 

Insert(5) 8 1 + 4 5 

Insert(6) 8 1 6 

Insert(7) 8 1 7 

  



Analysis Of Dynamic Tables 

● Let ci = cost of ith insert 

● ci = i if i-1 is exact power of 2, 1 otherwise 

● Example: 

■ Operation Table Size    Cost 
Insert(1) 1 1 1 

Insert(2) 2 1 + 1 2 

Insert(3) 4 1 + 2 3 

Insert(4) 4 1 4 

Insert(5) 8 1 + 4 5 

Insert(6) 8 1 6 

Insert(7) 8 1 7 

Insert(8) 8 1 8 



Analysis Of Dynamic Tables 

● Let ci = cost of ith insert 

● ci = i if i-1 is exact power of 2, 1 otherwise 

● Example: 

■ Operation Table Size    Cost 
Insert(1) 1 1 1 

Insert(2) 2 1 + 1 2 

Insert(3) 4 1 + 2 

Insert(4) 4 1 

Insert(5) 8 1 + 4 

Insert(6) 8 1 

Insert(7) 8 1 

Insert(8) 8 1 

Insert(9) 16 1 + 8 
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Aggregate Analysis 

● n Insert() operations cost 

 

 

● Average cost of operation  

= (total cost)/(# operations) < 3 

● Asymptotically, then, a dynamic table costs the 

same as a fixed-size table 

■ Both O(1) per Insert operation 
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Accounting Analysis 

● Charge each operation $3 amortized cost 

■ Use $1 to perform immediate Insert() 

■ Store $2 

● When table doubles 

■ $1 reinserts old item, $1 reinserts another old item 

■ Point is, we’ve already paid these costs 

■ Upshot: constant (amortized) cost per operation 

 



Disjoint Set Union 

● So how do we implement disjoint-set union? 

■ Naïve implementation: use a linked list to 

represent each set: 

 

 

○ MakeSet(): ??? time 

○ FindSet(): ??? time 

○ Union(A,B): “copy” elements of A into B: ??? time 



Disjoint Set Union 

● So how do we implement disjoint-set union? 

■ Naïve implementation: use a linked list to 

represent each set: 

 

 

○ MakeSet(): O(1) time 

○ FindSet(): O(1) time 

○ Union(A,B): “copy” elements of A into B: O(A) time 

■ How long can a single Union() take? 

■ How long will n Union()’s take? 



Disjoint Set Union: Analysis 

● Worst-case analysis: O(n2) time for n Union’s 
Union(S1, S2)  “copy”  1 element 

Union(S2, S3)  “copy”  2 elements 

… 

Union(Sn-1, Sn) “copy”  n-1 elements 

      O(n2) 

● Improvement: always copy smaller into larger 

■ Why will this make things better? 

■ What is the worst-case time of Union()? 

● But now n Union’s take only O(n lg n) time! 



Amortized Analysis of Disjoint Sets 

● Amortized analysis computes average times 

without using probability 

● With our new Union(), any individual element is 

copied at most lg n times when forming the 

complete set from 1-element sets 

■ Worst case: Each time copied, element in smaller set 

1st time resulting set size  2 

2nd time     4 

… 

(lg n)th time     n 



Amortized Analysis of Disjoint Sets 

● Since we have n elements each copied at most 

lg n times, n Union()’s takes O(n lg n) time 

● We say that each Union() takes O(lg n) 

amortized time 

■ Financial term: imagine paying $(lg n) per Union 

■ At first we are overpaying; initial Union $O(1) 

■ But we accumulate enough $ in bank to pay for 

later expensive O(n) operation.   

■ Important: amount in bank never goes negative 


