Algorithms

Amortized Analysis

Review: Running Time of Kruskal's Algorithm

- Expensive operations:
 - Sort edges: O(E lg E)
 - O(V) MakeSet()'s
 - O(E) FindSet()'s
 - O(V) Union()'s
- Upshot:
 - Comes down to efficiency of disjoint-set operations, particularly Union()

Review: Disjoint Set Union

- So how do we represent disjoint sets?
- Naïve implementation: use a linked list to represent elements, with pointers back to set:

- MakeSet(): O(1)
- FindSet(): O(1)
- Union(A,B): "Copy" elements of A into set B by adjusting elements of A to point to B: O(A)
- How long could n Union()s take?

Review: Disjoint Set Union Analysis

- Worst-case analysis: $O(n^2)$ time for n Union's
 - Union(S_1, S_2)"copy"1 elementUnion(S_2, S_3)"copy"2 elements

. . .

$$\frac{\text{Union}(S_{\underline{n-1}}, S_{\underline{n}}) \quad \text{``copy''} \quad n-1 \text{ elements}}{O(n^2)}$$

Improvement: always copy smaller into larger *How long would above sequence of Union's take?*Worst case: n Union's take O(n lg n) time
Proof uses amortized analysis

Review:

Amortized Analysis of Disjoint Sets

- If elements are copied from the smaller set into the larger set, an element can be copied at most *lg n* times
 - Worst case: Each time copied, element in smaller set 1st time resulting set size ≥ 2 2nd time ≥ 4
 - $(\lg n)$ th time $\ge n$

Review:

Amortized Analysis of Disjoint Sets

- Since we have n elements each copied at most lg n times, n Union()'s takes O(n lg n) time
- Therefore we say the *amortized cost* of a Union() operation is O(lg n)
- This is the *aggregate method* of amortized analysis:
 - n operations take time T(n)
 - Average cost of an operation = T(n)/n

Amortized Analysis: Accounting Method

- Accounting method
 - Charge each operation an amortized cost
 - Amount not used stored in "bank"
 - Later operations can used stored money
 - Balance must not go negative
- Book also discusses *potential method*
 - But we won't worry about it here

Accounting Method Example: Dynamic Tables

- Implementing a table (e.g., hash table) for dynamic data, want to make it small as possible
- Problem: if too many items inserted, table may be too small
- Idea: allocate more memory as needed

Dynamic Tables

- 1. Init table size m = 1
- 2. Insert elements until number n > m
- 3. Generate new table of size 2m
- 4. Reinsert old elements into new table
- 5. (back to step 2)
- What is the worst-case cost of an insert?
- One insert can be costly, but the total?

- Let $c_i = \text{cost of } i\text{th insert}$
- $c_i = i$ if i-1 is exact power of 2, 1 otherwise
- Example:
 - Operation Table Size CostInsert(1) 1 1

- Let $c_i = \text{cost of } i\text{th insert}$
- $c_i = i$ if i-1 is exact power of 2, 1 otherwise
- Example:

Operation	Table Size	Cost
Insert(1)	1	1
Insert(2)	2	1 + 1

1
2

- Let $c_i = \text{cost of } i\text{th insert}$
- $c_i = i$ if i-1 is exact power of 2, 1 otherwise
- Example:

Operation	Table Size	Cost
Insert(1)	1	1
Insert(2)	2	1 + 1
Insert(3)	4	1 + 2

- Let $c_i = \text{cost of } i\text{th insert}$
- $c_i = i$ if i-1 is exact power of 2, 1 otherwise
- Example:

Operation	Table Size	Cost
Insert(1)	1	1
Insert(2)	2	1 + 1
Insert(3)	4	1 + 2
<pre>Insert(4)</pre>	4	1

1	
2	
3	
4	

- Let $c_i = \text{cost of } i\text{th insert}$
- $c_i = i$ if i-1 is exact power of 2, 1 otherwise
- Example:

Operation	Table Size	Cost
Insert(1)	1	1
Insert(2)	2	1 + 1
Insert(3)	4	1 + 2
Insert(4)	4	1
Insert(5)	8	1 + 4

1	
2	
3	
4	
5	

- Let $c_i = \text{cost of } i\text{th insert}$
- $c_i = i$ if i-1 is exact power of 2, 1 otherwise
- Example:

Operation	Table Size	Cost
Insert(1)	1	1
Insert(2)	2	1 + 1
Insert(3)	4	1 + 2
Insert(4)	4	1
Insert(5)	8	1 + 4
Insert(6)	8	1

1	
2	
3	
4	
5	
6	

- Let $c_i = \text{cost of } i\text{th insert}$
- $c_i = i$ if i-1 is exact power of 2, 1 otherwise
- Example:

Operation	Table Size	Cost
Insert(1)	1	1
Insert(2)	2	1 + 1
Insert(3)	4	1 + 2
Insert(4)	4	1
Insert(5)	8	1 + 4
Insert(6)	8	1
Insert(7)	8	1

- Let $c_i = \text{cost of } i\text{th insert}$
- $c_i = i$ if i-1 is exact power of 2, 1 otherwise
- Example:

Operation	Table Size	Cost
Insert(1)	1	1
Insert(2)	2	1 + 1
Insert(3)	4	1 + 2
Insert(4)	4	1
Insert(5)	8	1 + 4
Insert(6)	8	1
Insert(7)	8	1
Insert(8)	8	1

1
2
3
4
5
6
7
8

- Let $c_i = \text{cost of } i\text{th insert}$
- $c_i = i$ if i-1 is exact power of 2, 1 otherwise
- Example:

Operation	Table Size	Cost
Insert(1)	1	1
Insert(2)	2	1 + 1
Insert(3)	4	1 + 2
Insert(4)	4	1
Insert(5)	8	1 + 4
Insert(6)	8	1
Insert(7)	8	1
Insert(8)	8	1
Insert(9)	16	1 + 8

1
2
3
4
5
6
7
8
9

Aggregate Analysis

• *n* Insert() operations cost

$$\sum_{i=1}^{n} c_{i} \le n + \sum_{j=0}^{\lg n} 2^{j} = n + (2n-1) < 3n$$

- Average cost of operation
 = (total cost)/(# operations) < 3
- Asymptotically, then, a dynamic table costs the same as a fixed-size table
 - Both O(1) per Insert operation

Accounting Analysis

- Charge each operation \$3 amortized cost
 - Use \$1 to perform immediate Insert()
 - Store \$2
- When table doubles
 - \$1 reinserts old item, \$1 reinserts another old item
 - Point is, we've already paid these costs
 - Upshot: constant (amortized) cost per operation

Disjoint Set Union

- So how do we implement disjoint-set union?
 - Naïve implementation: use a linked list to

represent each set:

o MakeSet(): ??? time

- o FindSet(): ??? time
- Union(A,B): "copy" elements of A into B: ??? time

Disjoint Set Union

- So how do we implement disjoint-set union?
 - Naïve implementation: use a linked list to

represent each set:

- MakeSet(): O(1) time
- FindSet(): O(1) time
- Union(A,B): "copy" elements of A into B: O(A) time
- *How long can a single Union() take?*
- How long will n Union()'s take?

Disjoint Set Union: Analysis

- Worst-case analysis: O(n²) time for n Union's
 - Union(S_1, S_2)"copy"1 elementUnion(S_2, S_3)"copy"2 elements

$$\frac{\text{Union}(S_{\underline{n-1}}, S_{\underline{n}}) \quad \text{``copy''} \quad \underline{n-1 \text{ elements}}}{O(n^2)}$$

- Improvement: always copy smaller into larger
 - Why will this make things better?

. . .

- What is the worst-case time of Union()?
- But now n Union's take only O(n lg n) time!

Amortized Analysis of Disjoint Sets

- *Amortized analysis* computes average times without using probability
- With our new Union(), any individual element is copied at most *lg n* times when forming the complete set from 1-element sets
 - Worst case: Each time copied, element in smaller set 1st time resulting set size ≥ 2 2nd time ≥ 4

> n

(lg n)th time

. . .

Amortized Analysis of Disjoint Sets

- Since we have n elements each copied at most lg n times, n Union()'s takes O(n lg n) time
- We say that each Union() takes O(lg n) *amortized time*
 - Financial term: imagine paying \$(lg n) per Union
 - At first we are overpaying; initial Union \$O(1)
 - But we accumulate enough \$ in bank to pay for later expensive O(n) operation.
 - Important: amount in bank never goes negative