
Algorithms 

Dynamic Programming 



Review: Amortized Analysis 

● To illustrate amortized analysis we examined 

dynamic tables 

1. Init table size m = 1 

2. Insert elements until number n > m 

3. Generate new table of size 2m 

4. Reinsert old elements into new table 

5. (back to step 2) 

● What is the worst-case cost of an insert? 

● What is the amortized cost of an insert? 



Review:  

Analysis Of Dynamic Tables 

● Let ci = cost of ith insert 

● ci = i if i-1 is exact power of 2, 1 otherwise 

● Example: 

■ Operation Table Size    Cost 
Insert(1) 1 1 1 

Insert(2) 2 1 + 1 2 

Insert(3) 4 1 + 2 

Insert(4) 4 1 

Insert(5) 8 1 + 4 

Insert(6) 8 1 

Insert(7) 8 1 

Insert(8) 8 1 

Insert(9) 16 1 + 8 
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Review: Aggregate Analysis 

● n Insert() operations cost 

 

 

● Average cost of operation  

= (total cost)/(# operations) < 3 

● Asymptotically, then, a dynamic table costs the 

same as a fixed-size table 

■ Both O(1) per Insert operation 
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Review: Accounting Analysis 

● Charge each operation $3 amortized cost 

■ Use $1 to perform immediate Insert() 

■ Store $2 

● When table doubles 

■ $1 reinserts old item, $1 reinserts another old item 

■ We’ve paid these costs up front with the last n/2 

Insert()s 

● Upshot: O(1) amortized cost per operation 

 



Review: Accounting Analysis  

● Suppose must support insert & delete, table 

should contract as well as expand 

■ Table overflows  double it (as before) 

■ Table < 1/4 full  halve it 

■ Charge $3 for Insert (as before) 

■ Charge $2 for Delete 

○ Store extra $1 in emptied slot 

○ Use later to pay to copy remaining items to new table 

when shrinking table 

● What if we halve size when table < 1/8 full? 



Dynamic Programming 

● Another strategy for designing algorithms is 

dynamic programming 

■ A metatechnique, not an algorithm  

(like divide & conquer) 

■ The word “programming” is historical and 
predates computer programming 

● Use when problem breaks down into recurring 

small subproblems 



Dynamic Programming Example:  

Longest Common Subsequence 

● Longest common subsequence (LCS) problem:  

■ Given two sequences x[1..m] and y[1..n], find the 

longest subsequence which occurs in both 

■ Ex: x = {A B C B D A B }, y = {B D C A B A} 

■ {B C} and {A A} are both subsequences of both 

○ What is the LCS? 

■ Brute-force algorithm: For every subsequence of x, 

check if it’s a subsequence of y 

○ How many subsequences of x are there? 

○ What will be the running time of the brute-force alg? 



LCS Algorithm 

● Brute-force algorithm: 2m subsequences of x to 

check against n elements of y: O(n 2m) 

● We can do better: for now, let’s only worry 
about the problem of finding the length of LCS 

■ When finished we will see how to backtrack from 

this solution back to the actual LCS 

● Notice LCS problem has optimal substructure 

■ Subproblems: LCS of pairs of prefixes of x and y 



Finding LCS Length 

● Define c[i,j] to be the length of the LCS of 

x[1..i] and y[1..j] 

■ What is the length of LCS of x and y? 

● Theorem:  

 

 

● What is this really saying? 
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