Algorithms

Dynamic Programming

Review: Amortized Analysis

- To illustrate amortized analysis we examined *dynamic tables*
 - 1. Init table size m = 1
 - 2. Insert elements until number n > m
 - 3. Generate new table of size 2m
 - 4. Reinsert old elements into new table
 - 5. (back to step 2)
- What is the worst-case cost of an insert?
- What is the amortized cost of an insert?

Review: Analysis Of Dynamic Tables

- Let $c_i = \text{cost of } i\text{th insert}$
- $c_i = i$ if i-1 is exact power of 2, 1 otherwise
- Example:

Operation	Table Size	Cost
Insert(1)	1	1
Insert(2)	2	1 + 1
Insert(3)	4	1 + 2
Insert(4)	4	1
Insert(5)	8	1 + 4
Insert(6)	8	1
Insert(7)	8	1
Insert(8)	8	1
Insert(9)	16	1 + 8

1
2
3
4
5
6
7
8
9

Review: Aggregate Analysis

• *n* Insert() operations cost

$$\sum_{i=1}^{n} c_i \le n + \sum_{j=0}^{\lg n} 2^j = n + (2n-1) < 3n$$

- Average cost of operation
 = (total cost)/(# operations) < 3
- Asymptotically, then, a dynamic table costs the same as a fixed-size table
 - Both O(1) per Insert operation

Review: Accounting Analysis

- Charge each operation \$3 amortized cost
 - Use \$1 to perform immediate Insert()
 - Store \$2
- When table doubles
 - \$1 reinserts old item, \$1 reinserts another old item
 - We've paid these costs up front with the last n/2 Insert()s
- Upshot: O(1) amortized cost per operation

Review: Accounting Analysis

- Suppose must support insert & delete, table should contract as well as expand
 - Table overflows \Rightarrow double it (as before)
 - Table < 1/4 full \Rightarrow halve it
 - Charge \$3 for Insert (as before)
 - Charge \$2 for Delete
 - Store extra \$1 in emptied slot
 - Use later to pay to copy remaining items to new table when shrinking table

• What if we halve size when table < 1/8 full?

Dynamic Programming

- Another strategy for designing algorithms is *dynamic programming*
 - A metatechnique, not an algorithm (like divide & conquer)
 - The word "programming" is historical and predates computer programming
- Use when problem breaks down into recurring small subproblems

Dynamic Programming Example: Longest Common Subsequence

- Longest common subsequence (LCS) problem:
 - Given two sequences x[1..m] and y[1..n], find the longest subsequence which occurs in both
 - Ex: $x = \{A B C B D A B\}, y = \{B D C A B A\}$
 - {B C} and {A A} are both subsequences of both
 What is the LCS?
 - Brute-force algorithm: For every subsequence of x, check if it's a subsequence of y
 - *How many subsequences of x are there?*
 - What will be the running time of the brute-force alg?

LCS Algorithm

- Brute-force algorithm: 2^m subsequences of x to check against *n* elements of y: O(*n* 2^{*m*})
- We can do better: for now, let's only worry about the problem of finding the *length* of LCS
 - When finished we will see how to backtrack from this solution back to the actual LCS
- Notice LCS problem has optimal substructure
 Subproblems: LCS of pairs of *prefixes* of x and y

Finding LCS Length

- Define c[*i*,*j*] to be the length of the LCS of x[1..*i*] and y[1..*j*]
 - What is the length of LCS of x and y?
- Theorem:

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

• What is this really saying?