
Algorithms

Dynamic Programming

Review: Amortized Analysis

● To illustrate amortized analysis we examined

dynamic tables

1. Init table size m = 1

2. Insert elements until number n > m

3. Generate new table of size 2m

4. Reinsert old elements into new table

5. (back to step 2)

● What is the worst-case cost of an insert?

● What is the amortized cost of an insert?

Review:

Analysis Of Dynamic Tables

● Let ci = cost of ith insert

● ci = i if i-1 is exact power of 2, 1 otherwise

● Example:

■ Operation Table Size Cost
Insert(1) 1 1 1

Insert(2) 2 1 + 1 2

Insert(3) 4 1 + 2

Insert(4) 4 1

Insert(5) 8 1 + 4

Insert(6) 8 1

Insert(7) 8 1

Insert(8) 8 1

Insert(9) 16 1 + 8

1

2

3

4

5

6

7

8

9

Review: Aggregate Analysis

● n Insert() operations cost

● Average cost of operation

= (total cost)/(# operations) < 3

● Asymptotically, then, a dynamic table costs the

same as a fixed-size table

■ Both O(1) per Insert operation

nnnnc
n

j

j
n

i

i 3)12(2
lg

01

 


Review: Accounting Analysis

● Charge each operation $3 amortized cost

■ Use $1 to perform immediate Insert()

■ Store $2

● When table doubles

■ $1 reinserts old item, $1 reinserts another old item

■ We’ve paid these costs up front with the last n/2

Insert()s

● Upshot: O(1) amortized cost per operation

Review: Accounting Analysis

● Suppose must support insert & delete, table

should contract as well as expand

■ Table overflows  double it (as before)

■ Table < 1/4 full  halve it

■ Charge $3 for Insert (as before)

■ Charge $2 for Delete

○ Store extra $1 in emptied slot

○ Use later to pay to copy remaining items to new table

when shrinking table

● What if we halve size when table < 1/8 full?

Dynamic Programming

● Another strategy for designing algorithms is

dynamic programming

■ A metatechnique, not an algorithm

(like divide & conquer)

■ The word “programming” is historical and
predates computer programming

● Use when problem breaks down into recurring

small subproblems

Dynamic Programming Example:

Longest Common Subsequence

● Longest common subsequence (LCS) problem:

■ Given two sequences x[1..m] and y[1..n], find the

longest subsequence which occurs in both

■ Ex: x = {A B C B D A B }, y = {B D C A B A}

■ {B C} and {A A} are both subsequences of both

○ What is the LCS?

■ Brute-force algorithm: For every subsequence of x,

check if it’s a subsequence of y

○ How many subsequences of x are there?

○ What will be the running time of the brute-force alg?

LCS Algorithm

● Brute-force algorithm: 2m subsequences of x to

check against n elements of y: O(n 2m)

● We can do better: for now, let’s only worry
about the problem of finding the length of LCS

■ When finished we will see how to backtrack from

this solution back to the actual LCS

● Notice LCS problem has optimal substructure

■ Subproblems: LCS of pairs of prefixes of x and y

Finding LCS Length

● Define c[i,j] to be the length of the LCS of

x[1..i] and y[1..j]

■ What is the length of LCS of x and y?

● Theorem:

● What is this really saying?









otherwise]),1[],1,[max(

],[][if1]1,1[
],[

jicjic

jyixjic
jic

