- Algorithms

Dynamic programming Longest Common Subsequence

Dynamic programming

- It is used, when the solution can be recursively described in terms of solutions to subproblems (optimal substructure)
- Algorithm finds solutions to subproblems and stores them in memory for later use
- More efficient than "brute-force methods", which solve the same subproblems over and over again

Longest Common Subsequence (LCS)

Application: comparison of two DNA strings Ex: $\mathrm{X}=\{\mathrm{ABCBDAB}\}, Y=\{$ B D C A B A $\}$
Longest Common Subsequence:
$\mathrm{X}=\mathrm{AB} \quad \mathrm{C} \quad \mathrm{BDAB}$
$\mathrm{Y}=\mathrm{BDCAB} \mathrm{A}$
Brute force algorithm would compare each subsequence of X with the symbols in Y

LCS Algorithm

■ if $\left|\mathrm{XI}=\mathrm{m},|\mathrm{Y}|=\mathrm{n}\right.$, then there are 2^{m} subsequences of x ; we must compare each with Y (n comparisons)

- So the running time of the brute-force algorithm is $\mathrm{O}\left(\mathrm{n} 2^{\mathrm{m}}\right)$
- Notice that the LCS problem has optimal substructure: solutions of subproblems are parts of the final solution.
- Subproblems: "find LCS of pairs of prefixes of X and Y "

LCS Algorithm

- First we'll find the length of LCS. Later we'll modify the algorithm to find LCS itself.
■ Define X_{i}, Y_{j} to be the prefixes of X and Y of length i and j respectively
- Define $c[i, j]$ to be the length of LCS of X_{i} and Y_{j}
- Then the length of LCS of X and Y will be c[m,n]

$$
c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j], \\ \max (c[i, j-1], c[i-1, j]) & \text { otherwise }\end{cases}
$$

LCS recursive solution

$c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j], \\ \max (c[i, j-1], c[i-1, j]) & \text { otherwise }\end{cases}$

- We start with $i=j=0$ (empty substrings of x and y)
- Since X_{0} and Y_{0} are empty strings, their LCS is always empty (i.e. $c[0,0]=0$)
- LCS of empty string and any other string is $\underset{9,11 / 2015}{\text { empty }}$, so for every i and $\mathrm{j}: c[0, j]=c[i, 0]=0$

LCS recursive solution

$$
c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j], \\ \max (c[i, j-1], c[i-1, j]) & \text { otherwise }\end{cases}
$$

- When we calculate $c[i, j]$, we consider two cases:
- First case: $x[i]=y[j]$: one more symbol in strings X and Y matches, so the length of LCS X_{i} and Y_{j} equals to the length of LCS of $\underset{9,112015}{\text { smaller strings }} \mathrm{X}_{i-1}$ and Y_{i-1}, plus 1

LCS recursive solution

$c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j], \\ \max (c[i, j-1], c[i-1, j]) & \text { otherwise }\end{cases}$

■ Second case: $x[i]!=y[j]$

- As symbols don't match, our solution is not improved, and the length of $\operatorname{LCS}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{j}}\right)$ is the same as before (i.e. maximum of $\operatorname{LCS}\left(\mathrm{X}_{\mathrm{i}}\right.$, $\left.\mathrm{Y}_{\mathrm{j}-1}\right)$ and $\operatorname{LCS}\left(\mathrm{X}_{\mathrm{i}-1}, \mathrm{Y}_{\mathrm{j}}\right)$
W, $/ 42\}_{115}$ not just take the length of $\operatorname{LCS}\left(X_{i-1}, Y_{j-1}\right)$?

LCS Length Algorithm

LCS-Length(X, Y)

1. $\mathrm{m}=$ length $(\mathrm{X}) / /$ get the \# of symbols in X
2. $\mathrm{n}=$ length $(\mathrm{Y}) / /$ get the $\#$ of symbols in Y
3. for $\mathrm{i}=1$ to $\mathrm{m} \mathrm{c}[\mathrm{i}, 0]=0 \quad / /$ special case: Y_{0}
4. for $\mathrm{j}=1$ to $\mathrm{n} \quad \mathrm{c}[0, \mathrm{j}]=0 \quad / /$ special case: X_{0}
5. for $\mathrm{i}=1$ to m // for all X_{i}
6. for $\mathrm{j}=1$ to n // for all Y_{j}
7. if $\left(X_{i}==Y_{j}\right)$
8.

$$
c[i, j]=c[i-1, j-1]+1
$$

9.

$10^{9112015}$
else $c[i, j]=\max (c[i-1, j], c[i, j-1])$
10. return c

LCS Example

We'll see how LCS algorithm works on the following example:

- $\mathrm{X}=\mathrm{ABCB}$
$\square \mathrm{Y}=\mathrm{BDCAB}$

What is the Longest Common Subsequence of X and Y ?
$\operatorname{LCS}(\mathrm{X}, \mathrm{Y})=\mathrm{BCB}$
$\mathrm{X}=\mathrm{AB} \quad \mathbf{C} \quad \mathrm{B}$
${ }^{99} \boldsymbol{Y}^{2}+\quad$ B D C A B
$\mathrm{X}=\mathrm{ABCB} ; \quad \mathrm{m}=|\mathrm{X}|=4$
$\mathrm{Y}=\mathrm{BDCAB} ; \mathrm{n}=|\mathrm{Y}|=5$
Allocate array c[5,4]
9/11/2015

for $\mathrm{i}=1$ to m
$c[i, 0]=0$
for $\mathrm{j}=1$ to n
9/11/2015

$$
\begin{aligned}
& \text { if }\left(X_{i}==Y_{j}\right) \\
& c[i, j]=c[i-1, j-1]+1 \\
& \text { else } c[i, j]=\max (c[i-1, j], c[i, j-1])
\end{aligned}
$$

$$
\begin{aligned}
& \text { if }\left(X_{i}==Y_{j}\right) \\
& c[i, j]=c[i-1, j-1]+1 \\
& \text { else } c[i, j]=\max (c[i-1, j], c[i, j-1])
\end{aligned}
$$

	LCS Example (4)						ABCB BDCAB	
i	j	${ }^{\text {Yj }}$	1	D	3 C	A	5 B	BDCAB
0	Xi	0	0	0	0	0	0	
1	(A)	0	0	0	0	1		
2	B	0						
3	C	0						
4	B	0						

$$
\begin{aligned}
& \text { if }\left(X_{i}==Y_{j}\right) \\
& c[i, j]=c[i-1, j-1]+1 \\
& \text { else } c[i, j]=\max (c[i-1, j], c[i, j-1])
\end{aligned}
$$

$$
\begin{aligned}
& \text { if }\left(X_{i}==Y_{j}\right) \\
& c[i, j]=c[i-1, j-1]+1 \\
& \text { else } c[i, j]=\max (c[i-1, j], c[i, j-1])
\end{aligned}
$$

$$
\begin{aligned}
& \text { if }\left(X_{i}==Y_{j}\right) \\
& c[i, j]=c[i-1, j-1]+1 \\
& \text { else } c[i, j]=\max (c[i-1, j], c[i, j-1])
\end{aligned}
$$

								ABCB
	j	0	1					BDCAB
i		Yj	B	D	C	A	B	
0	Xi	0	0	0	0	0	0	
1	A	0	0	0	0	1	1	
2	B	0	1	1	1	1		
3	C	0						
4	B	0						

$$
\begin{aligned}
& \text { if }\left(X_{i}==Y_{j}\right) \\
& c[i, j]=c[i-1, j-1]+1 \\
& \text { else } c[i, j]=\max (c[i-1, j], c[i, j-1])
\end{aligned}
$$

$$
\begin{aligned}
& \text { if }\left(X_{i}==Y_{j}\right) \\
& c[i, j]=c[i-1, j-1]+1 \\
& \text { else } c[i, j]=\max (c[i-1, j], c[i, j-1])
\end{aligned}
$$

i
0
1
2
3
4
LCS Example (10) ABCB $\begin{array}{lllllll}\mathrm{j} & 0 & 1 & 2 & { }^{3} & 4 & 5^{\mathrm{BDCAB}}\end{array}$

$$
\begin{aligned}
& \text { if }\left(X_{i}==Y_{j}\right) \\
& c[i, j]=c[i-1, j-1]+1 \\
& \text { else } c[i, j]=\max (c[i-1, j], c[i, j-1])
\end{aligned}
$$

$$
\begin{aligned}
& \text { if }\left(X_{i}==Y_{j}\right) \\
& c[i, j]=c[i-1, j-1]+1 \\
& \text { else } c[i, j]=\max (c[i-1, j], c[i, j-1])
\end{aligned}
$$

LCS Example (12) ABCB

$$
\begin{aligned}
& \text { if }\left(X_{i}==Y_{j}\right) \\
& c[i, j]=c[i-1, j-1]+1 \\
& \text { else } c[i, j]=\max (c[i-1, j], c[i, j-1])
\end{aligned}
$$

LCS Example (13) ABCB

	LCS Example (13)							ABCB BDCAB
		$\begin{gathered} 0 \\ \mathrm{Yj} \end{gathered}$	B	${ }^{2}$	C	4 A	B	BDCAB
0	Xi	0	0	0	0	0	0	
1	A	0	0	0	0	1	1	
2	B	0	1	1	1	1	2	
3	C	0	1	1	2	2	2	
4	(B)		1					

0
1
2
3
4
LCS Example (14) ABCB

	j	0	1				${ }_{5} \mathrm{BDCAB}$	
		Yj	B	D	C	A	B	
0	Xi	0	0	0	0	0	0	
1	A	0	0	0	0	1	1	
2	B	0	1	1	1	1	2	
3	C	0	1	1	2	2	2	
4	B	0		\downarrow	\downarrow	\downarrow_{2}		

$$
\begin{aligned}
& \text { if }\left(X_{i}==Y_{j}\right) \\
& c[i, j]=c[i-1, j-1]+1 \\
& \text { else } c[i, j]=\max (c[i-1, j], c[i, j-1])
\end{aligned}
$$

LCS Example (15) ABCB

							BDCAB	
		$\begin{gathered} 0 \\ \mathrm{Yj} \end{gathered}$	$\begin{aligned} & 1 \\ & \mathbf{B} \end{aligned}$			A		
0	Xi	0	0	0	0	0	0	
1	A	0	0	0	0	1	1	
2	B	0	1	1	1	1	2	
3	C	0	1	1	2	2		
4	B	0	1	1	2	2		

$$
\begin{aligned}
& \text { if }\left(X_{i}==Y_{j}\right) \\
& c[i, j]=c[i-1, j-1]+1 \\
& \text { else } c[i, j]=\max (c[i-1, j], c[i, j-1])
\end{aligned}
$$

LCS Algorithm Running Time

- LCS algorithm calculates the values of each entry of the array $c[m, n]$
- So what is the running time?
$\mathrm{O}(\mathrm{m} * \mathrm{n})$
since each $c[i, j]$ is calculated in
constant time, and there are $m * n$
elements in the array

How to find actual LCS

- So far, we have just found the length of LCS, but not LCS itself.
- We want to modify this algorithm to make it output Longest Common Subsequence of X and Y
Each $c[i, j]$ depends on $c[i-1, j]$ and $c[i, j-1]$ or $c[i-1, j-1]$
For each $c[i, j]$ we can say how it was acquired:

2	2
$9 \rightarrow 1+1 R_{2} 15$	3

For example, here

$$
c[i, j]=c[i-1, j-1]+1=2+1=3
$$

How to find actual LCS - continued

- Remember that

$$
c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j], \\ \max (c[i, j-1], c[i-1, j]) & \text { otherwise }\end{cases}
$$

- So we can start from $c[m, n]$ and go backwards
- Whenever $c[i, j]=c[i-1, j-1]+1$, remember $x[i]$ (because $x[i]$ is a part of LCS)
- When $\mathrm{i}=0$ or $\mathrm{j}=0$ (i.e. we reached the beginning), output remembered letters in reverse order

LCS (reversed order): B C B LCS (straight order):

B C B
${ }^{9}$ (theis string turned out to be a palindrome)

Knapsack problem

Given some items, pack the knapsack to get the maximum total value. Each item has some weight and some value. Total weight that we can carry is no more than some fixed number W . So we must consider weights of items as well as their value.

	Item \#	Weight	Value
	1	1	8
9	3	6	
9,112015			
	3	5	5

Knapsack problem

There are two versions of the problem:
(1) "0-1 knapsack problem" and
(2) "Fractional knapsack problem"
(1) Items are indivisible; you either take an item or not. Solved with dynamic programming
(2) Items are divisible: you can take any fraction of an item. Solved with a greedy algorithm.

