
Algorithms 

Greedy Algorithms 



Review: Dynamic Programming 

● Dynamic programming is another strategy for 

designing algorithms 

● Use when problem breaks down into recurring 

small subproblems 



Review: Optimal Substructure of 

LCS 

● Observation 1: Optimal substructure 

■ A simple recursive algorithm will suffice 

■ Draw sample recursion tree from c[3,4] 

■ What will be the depth of the tree? 

● Observation 2: Overlapping subproblems 

■ Find some places where we solve the same 

subproblem more than once 
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Review: Structure of Subproblems 

● For the LCS problem: 

■ There are few subproblems in total 

■ And many recurring instances of each 

(unlike divide & conquer, where subproblems unique) 

● How many distinct problems exist for the LCS 

of x[1..m] and y[1..n]? 

● A: mn 



Memoization 

● Memoization is another way to deal with 

overlapping subproblems 

■ After computing the solution to a subproblem, 

store in a table 

■ Subsequent calls just do a table lookup 

● Can modify recursive alg to use memoziation: 

■ There are mn subproblems 

■ How many times is each subproblem wanted? 

■ What will be the running time for this algorithm?  

The running space? 



Review: Dynamic Programming 

● Dynamic programming: build table bottom-up 

■ Same table as memoization, but instead of starting 

at (m,n) and recursing down, start at (1,1) 

● Least Common Subsequence: LCS easy to 

calculate from LCS of prefixes 
○ As your homework shows, can actually reduce space to 

O(min(m,n)) 

● Knapsack problem: we’ll review this in a bit 



Review: Dynamic Programming 

● Summary of the basic idea:  

■ Optimal substructure: optimal solution to problem 

consists of optimal solutions to subproblems 

■ Overlapping subproblems: few subproblems in 

total, many recurring instances of each 

■ Solve bottom-up, building a table of solved 

subproblems that are used to solve larger ones 

● Variations: 

■ “Table” could be 3-dimensional, triangular, a tree, 

etc.   



Greedy Algorithms 

● A greedy algorithm always makes the choice 

that looks best at the moment 

■ My everyday examples:  

○ Walking to the Corner 

○ Playing a bridge hand 

■ The hope: a locally optimal choice will lead to a 

globally optimal solution 

■ For some problems, it works 

● Dynamic programming can be overkill; greedy 

algorithms tend to be easier to code 



Activity-Selection Problem 

● Problem: get your money’s worth out of a 
carnival 

■ Buy a wristband that lets you onto any ride 

■ Lots of rides, each starting and ending at different 

times 

■ Your goal: ride as many rides as possible 

○ Another, alternative goal that we don’t solve here: 
maximize time spent on rides 

● Welcome to the activity selection problem 



Activity-Selection 

● Formally: 

■ Given a set S of n activities 

 si = start time of activity i 

 fi = finish time of activity i 

■ Find max-size subset A of compatible activities 
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Activity Selection:  

Optimal Substructure  

● Let k be the minimum activity in A (i.e., the 

one with the earliest finish time).  Then A - {k} 

is an optimal solution to S’ = {i  S: si  fk} 

■ In words: once activity #1 is selected, the problem 

reduces to finding an optimal solution for activity-

selection over activities in S compatible with #1 

■ Proof: if we could find optimal solution B’ to S’ 
with |B| > |A - {k}|, 

○ Then B U {k} is compatible  

○ And |B U {k}| > |A| 



Activity Selection: 

Repeated Subproblems 

● Consider a recursive algorithm that tries all 

possible compatible subsets to find a maximal 

set, and notice repeated subproblems: 

S 

1A? 

S’ 
2A? 

S-{1} 

2A? 

S-{1,2} S’’ S’-{2} S’’ 

yes no 

no no yes yes 



Greedy Choice Property 

● Dynamic programming? Memoize? Yes, but… 

● Activity selection problem also exhibits the 

greedy choice property: 

■ Locally optimal choice  globally optimal sol’n 

■ Them 17.1: if S is an activity selection problem 

sorted by finish time, then  optimal solution  

A  S such that {1}  A 

○ Sketch of proof: if  optimal solution B that does not 

contain {1}, can always replace first activity in B with 

{1} (Why?).  Same number of activities, thus optimal. 



Activity Selection: 

A Greedy Algorithm 

● So actual algorithm is simple: 

■ Sort the activities by finish time 

■ Schedule the first activity 

■ Then schedule the next activity in sorted list which 

starts after previous activity finishes 

■ Repeat until no more activities 

● Intuition is even more simple: 

■ Always pick the shortest ride available at the time 



Minimum Spanning Tree Revisited 

● Recall: MST problem has optimal substructure 

■ Prove it 

● Is Prim’s algorithm greedy?  Why? 

● Is Kruskal’s algorithm greedy?  Why? 



Review: 

The Knapsack Problem 

● The famous knapsack problem: 

■ A thief breaks into a museum.  Fabulous paintings, 

sculptures, and jewels are everywhere.  The thief 

has a good eye for the value of these objects, and 

knows that each will fetch hundreds or thousands 

of dollars on the clandestine art collector’s market.  
But, the thief has only brought a single knapsack to 

the scene of the robbery, and can take away only 

what he can carry.  What items should the thief 

take to maximize the haul? 



Review: The Knapsack Problem 

● More formally, the 0-1 knapsack problem: 

■ The thief must choose among n items, where the 

ith item worth vi dollars and weighs wi pounds 

■ Carrying at most W pounds, maximize value 

○ Note: assume vi, wi, and W are all integers 

○ “0-1” b/c each item must be taken or left in entirety 

● A variation, the fractional knapsack problem: 

■ Thief can take fractions of items 

■ Think of items in 0-1 problem as gold ingots, in 

fractional problem as buckets of gold dust 



Review: The Knapsack Problem   

And Optimal Substructure 

● Both variations exhibit optimal substructure 

● To show this for the 0-1 problem, consider the 

most valuable load weighing at most W pounds 

■ If we remove item j from the load, what do we 

know about the remaining load? 

■ A: remainder must be the most valuable load 

weighing at most W - wj that thief could take from 

museum, excluding item j  



Solving The Knapsack Problem 

● The optimal solution to the fractional knapsack 

problem can be found with a greedy algorithm 

■ How? 

● The optimal solution to the 0-1 problem cannot 

be found with the same greedy strategy 

■ Greedy strategy: take in order of dollars/pound 

■ Example: 3 items weighing 10, 20, and 30 pounds, 

knapsack can hold 50 pounds 

○ Suppose item 2 is worth $100.  Assign values to the 

other items so that the greedy strategy will fail  



The Knapsack Problem:  

Greedy Vs. Dynamic 

● The fractional problem can be solved greedily 

● The 0-1 problem cannot be solved with a 

greedy approach 

■ As you have seen, however, it can be solved with 

dynamic programming 


