
Algorithms

NP Completeness

Review: Dynamic Programming

● When applicable:

■ Optimal substructure: optimal solution to problem

consists of optimal solutions to subproblems

■ Overlapping subproblems: few subproblems in

total, many recurring instances of each

■ Basic approach:

○ Build a table of solved subproblems that are used to

solve larger ones

○ What is the difference between memoization and

dynamic programming?

○ Why might the latter be more efficient?

Review: Greedy Algorithms

● A greedy algorithm always makes the choice

that looks best at the moment

■ The hope: a locally optimal choice will lead to a

globally optimal solution

■ For some problems, it works

○ Yes: fractional knapsack problem

○ No: playing a bridge hand

● Dynamic programming can be overkill; greedy

algorithms tend to be easier to code

Review: Activity-Selection Problem

● The activity selection problem: get your

money’s worth out of a carnival
■ Buy a wristband that lets you onto any ride

■ Lots of rides, starting and ending at different times

■ Your goal: ride as many rides as possible

● Naïve first-year CS major strategy:

■ Ride the first ride, when get off, get on the very

next ride possible, repeat until carnival ends

● What is the sophisticated third-year strategy?

Review: Activity-Selection

● Formally:

■ Given a set S of n activities

○ si = start time of activity i fi = finish time of activity i

■ Find max-size subset A of compatible activities

■ Assume activities sorted by finish time

● What is optimal substructure for this problem?

Review: Activity-Selection

● Formally:

■ Given a set S of n activities

○ si = start time of activity i fi = finish time of activity i

■ Find max-size subset A of compatible activities

■ Assume activities sorted by finish time

● What is optimal substructure for this problem?

■ A: If k is the activity in A with the earliest finish

time, then A - {k} is an optimal solution to

S’ = {i  S: si  fk}

Review: Greedy Choice Property

For Activity Selection

● Dynamic programming? Memoize? Yes, but…

● Activity selection problem also exhibits the

greedy choice property:

■ Locally optimal choice  globally optimal sol’n

■ Them 17.1: if S is an activity selection problem

sorted by finish time, then  optimal solution

A  S such that {1}  A

○ Sketch of proof: if  optimal solution B that does not

contain {1}, can always replace first activity in B with

{1} (Why?). Same number of activities, thus optimal.

Review:

The Knapsack Problem

● The 0-1 knapsack problem:

■ A thief must choose among n items, where the ith

item worth vi dollars and weighs wi pounds

■ Carrying at most W pounds, maximize value

● A variation, the fractional knapsack problem:

■ Thief can take fractions of items

■ Think of items in 0-1 problem as gold ingots, in

fractional problem as buckets of gold dust

● What greedy choice algorithm works for the

fractional problem but not the 0-1 problem?

NP-Completeness

● Some problems are intractable:

as they grow large, we are unable to solve

them in reasonable time

● What constitutes reasonable time? Standard

working definition: polynomial time

■ On an input of size n the worst-case running time

is O(nk) for some constant k

■ Polynomial time: O(n2), O(n3), O(1), O(n lg n)

■ Not in polynomial time: O(2n), O(nn), O(n!)

Polynomial-Time Algorithms

● Are some problems solvable in polynomial

time?

■ Of course: every algorithm we’ve studied provides
polynomial-time solution to some problem

■ We define P to be the class of problems solvable in

polynomial time

● Are all problems solvable in polynomial time?

■ No: Turing’s “Halting Problem” is not solvable by
any computer, no matter how much time is given

■ Such problems are clearly intractable, not in P

NP-Complete Problems

● The NP-Complete problems are an interesting

class of problems whose status is unknown

■ No polynomial-time algorithm has been

discovered for an NP-Complete problem

■ No suprapolynomial lower bound has been proved

for any NP-Complete problem, either

● We call this the P = NP question

■ The biggest open problem in CS

An NP-Complete Problem:

Hamiltonian Cycles

● An example of an NP-Complete problem:

■ A hamiltonian cycle of an undirected graph is a

simple cycle that contains every vertex

■ The hamiltonian-cycle problem: given a graph G,

does it have a hamiltonian cycle?

○ Draw on board: dodecahedron, odd bipartite graph

■ Describe a naïve algorithm for solving the

hamiltonian-cycle problem. Running time?

P and NP

● As mentioned, P is set of problems that can be

solved in polynomial time

● NP (nondeterministic polynomial time) is the

set of problems that can be solved in

polynomial time by a nondeterministic

computer

■ What the hell is that?

Nondeterminism

● Think of a non-deterministic computer as a

computer that magically “guesses” a solution,
then has to verify that it is correct

■ If a solution exists, computer always guesses it

■ One way to imagine it: a parallel computer that can

freely spawn an infinite number of processes

○ Have one processor work on each possible solution

○ All processors attempt to verify that their solution works

○ If a processor finds it has a working solution

■ So: NP = problems verifiable in polynomial time

P and NP

● Summary so far:

■ P = problems that can be solved in polynomial time

■ NP = problems for which a solution can be verified

in polynomial time

■ Unknown whether P = NP (most suspect not)

● Hamiltonian-cycle problem is in NP:

■ Cannot solve in polynomial time

■ Easy to verify solution in polynomial time (How?)

NP-Complete Problems

● We will see that NP-Complete problems are

the “hardest” problems in NP:
■ If any one NP-Complete problem can be solved in

polynomial time…

■ …then every NP-Complete problem can be solved

in polynomial time…

■ …and in fact every problem in NP can be solved in

polynomial time (which would show P = NP)

■ Thus: solve hamiltonian-cycle in O(n100) time,

you’ve proved that P = NP. Retire rich & famous.

Reduction

● The crux of NP-Completeness is reducibility

■ Informally, a problem P can be reduced to another

problem Q if any instance of P can be “easily
rephrased” as an instance of Q, the solution to which
provides a solution to the instance of P

○ What do you suppose “easily” means?

○ This rephrasing is called transformation

■ Intuitively: If P reduces to Q, P is “no harder to
solve” than Q

Reducibility

● An example:

■ P: Given a set of Booleans, is at least one TRUE?

■ Q: Given a set of integers, is their sum positive?

■ Transformation: (x1, x2, …, xn) = (y1, y2, …, yn)

where yi = 1 if xi = TRUE, yi = 0 if xi = FALSE

● Another example:

■ Solving linear equations is reducible to solving

quadratic equations

○ How can we easily use a quadratic-equation solver to

solve linear equations?

Using Reductions

● If P is polynomial-time reducible to Q, we

denote this P p Q

● Definition of NP-Complete:

■ If P is NP-Complete, P  NP and all problems R

are reducible to P

■ Formally: R p P  R  NP

● If P p Q and P is NP-Complete, Q is also NP-

Complete

■ This is the key idea you should take away today

Coming Up

● Given one NP-Complete problem, we can

prove many interesting problems NP-Complete

■ Graph coloring (= register allocation)

■ Hamiltonian cycle

■ Hamiltonian path

■ Knapsack problem

■ Traveling salesman

■ Job scheduling with penalities

■ Many, many more

