Algorithms

NP Completeness

Review: Dynamic Programming

• When applicable:

- Optimal substructure: optimal solution to problem consists of optimal solutions to subproblems
- Overlapping subproblems: few subproblems in total, many recurring instances of each
- Basic approach:
 - Build a table of solved subproblems that are used to solve larger ones
 - What is the difference between memoization and dynamic programming?
 - Why might the latter be more efficient?

Review: Greedy Algorithms

- A *greedy algorithm* always makes the choice that looks best at the moment
 - The hope: a locally optimal choice will lead to a globally optimal solution
 - For some problems, it works
 - Yes: fractional knapsack problem
 - No: playing a bridge hand
- Dynamic programming can be overkill; greedy algorithms tend to be easier to code

Review: Activity-Selection Problem

- The *activity selection problem*: get your money's worth out of a carnival
 - Buy a wristband that lets you onto any ride
 - Lots of rides, starting and ending at different times
 - Your goal: ride as many rides as possible
- Naïve first-year CS major strategy:
 - Ride the first ride, when get off, get on the very next ride possible, repeat until carnival ends
- What is the sophisticated third-year strategy?

Review: Activity-Selection

- Formally:
 - Given a set *S* of *n* activities
 - s_i = start time of activity i f_i = finish time of activity i
 - Find max-size subset A of compatible activities
 - Assume activities sorted by finish time
- What is optimal substructure for this problem?

Review: Activity-Selection

- Formally:
 - Given a set *S* of *n* activities
 - s_i = start time of activity i f_i = finish time of activity i
 - Find max-size subset A of compatible activities
 - Assume activities sorted by finish time
- What is optimal substructure for this problem?
 - A: If k is the activity in A with the earliest finish time, then A $\{k\}$ is an optimal solution to $S' = \{i \in S: s_i \ge f_k\}$

Review: Greedy Choice Property For Activity Selection

- Dynamic programming? Memoize? Yes, but...
- Activity selection problem also exhibits the *greedy choice* property:
 - Locally optimal choice \Rightarrow globally optimal sol'n
 - Them 17.1: if *S* is an activity selection problem sorted by finish time, then \exists optimal solution $A \subseteq S$ such that $\{1\} \in A$
 - Sketch of proof: if ∃ optimal solution B that does not contain {1}, can always replace first activity in B with {1} (*Why?*). Same number of activities, thus optimal.

Review: The Knapsack Problem

- The 0-1 knapsack problem:
 - A thief must choose among *n* items, where the *i*th item worth v_i dollars and weighs w_i pounds
 Carrying at most W pounds, maximize value
- A variation, the *fractional knapsack problem*:
 Thief can take fractions of items
 - Think of items in 0-1 problem as gold ingots, in fractional problem as buckets of gold dust
- What greedy choice algorithm works for the fractional problem but not the 0-1 problem?

NP-Completeness

- Some problems are *intractable*: as they grow large, we are unable to solve them in reasonable time
- What constitutes reasonable time? Standard working definition: *polynomial time*
 - On an input of size n the worst-case running time is O(n^k) for some constant k
 - Polynomial time: $O(n^2)$, $O(n^3)$, O(1), $O(n \lg n)$
 - Not in polynomial time: $O(2^n)$, $O(n^n)$, O(n!)

Polynomial-Time Algorithms

- Are some problems solvable in polynomial time?
 - Of course: every algorithm we've studied provides polynomial-time solution to some problem
 - We define **P** to be the class of problems solvable in polynomial time
- Are all problems solvable in polynomial time?
 - No: Turing's "Halting Problem" is not solvable by any computer, no matter how much time is given
 - Such problems are clearly intractable, not in **P**

NP-Complete Problems

- The *NP-Complete* problems are an interesting class of problems whose status is unknown
 - No polynomial-time algorithm has been discovered for an NP-Complete problem
 - No suprapolynomial lower bound has been proved for any NP-Complete problem, either
- We call this the P = NP question

The biggest open problem in CS

An NP-Complete Problem: Hamiltonian Cycles

- An example of an NP-Complete problem:
 - A hamiltonian cycle of an undirected graph is a simple cycle that contains every vertex
 - The hamiltonian-cycle problem: given a graph G, does it have a hamiltonian cycle?

• Draw on board: dodecahedron, odd bipartite graph

Describe a naïve algorithm for solving the hamiltonian-cycle problem. Running time?

P and NP

- As mentioned, **P** is set of problems that can be solved in polynomial time
- NP (*nondeterministic polynomial time*) is the set of problems that can be solved in polynomial time by a *nondeterministic* computer
 - What the hell is that?

Nondeterminism

- Think of a non-deterministic computer as a computer that magically "guesses" a solution, then has to verify that it is correct
 - If a solution exists, computer always guesses it
 - One way to imagine it: a parallel computer that can freely spawn an infinite number of processes
 - Have one processor work on each possible solution
 - All processors attempt to verify that their solution works
 - If a processor finds it has a working solution
 - So: **NP** = problems *verifiable* in polynomial time

P and NP

- Summary so far:
 - \mathbf{P} = problems that can be solved in polynomial time
 - NP = problems for which a solution can be verified in polynomial time
 - Unknown whether $\mathbf{P} = \mathbf{NP}$ (most suspect not)
- Hamiltonian-cycle problem is in **NP**:
 - Cannot solve in polynomial time
 - Easy to verify solution in polynomial time (*How*?)

NP-Complete Problems

- We will see that NP-Complete problems are the "hardest" problems in NP:
 - If any one NP-Complete problem can be solved in polynomial time...
 - ...then *every* NP-Complete problem can be solved in polynomial time...
 - ...and in fact *every* problem in NP can be solved in polynomial time (which would show P = NP)
 - Thus: solve hamiltonian-cycle in $O(n^{100})$ time, you've proved that P = NP. Retire rich & famous.

Reduction

• The crux of NP-Completeness is *reducibility*

Informally, a problem P can be reduced to another problem Q if *any* instance of P can be "easily rephrased" as an instance of Q, the solution to which provides a solution to the instance of P

• What do you suppose "easily" means?

• This rephrasing is called *transformation*

Intuitively: If P reduces to Q, P is "no harder to solve" than Q

Reducibility

- An example:
 - P: Given a set of Booleans, is at least one TRUE?
 - Q: Given a set of integers, is their sum positive?
 - Transformation: $(x_1, x_2, ..., x_n) = (y_1, y_2, ..., y_n)$ where $y_i = 1$ if $x_i = TRUE$, $y_i = 0$ if $x_i = FALSE$
- Another example:
 - Solving linear equations is reducible to solving quadratic equations
 - *How can we easily use a quadratic-equation solver to solve linear equations?*

Using Reductions

- If P is *polynomial-time reducible* to Q, we denote this P ≤_p Q
- Definition of NP-Complete:
 - If P is NP-Complete, P ∈ NP and all problems R are reducible to P
 - Formally: $R \leq_p P \forall R \in \mathbf{NP}$
- If P ≤_p Q and P is NP-Complete, Q is also NP-Complete
 - This is the *key idea* you should take away today

Coming Up

- Given one NP-Complete problem, we can prove many interesting problems NP-Complete
 - Graph coloring (= register allocation)
 - Hamiltonian cycle
 - Hamiltonian path
 - Knapsack problem
 - Traveling salesman
 - Job scheduling with penalities
 - Many, many more