
Algorithms 

NP Completeness 



Review: Dynamic Programming 

● When applicable:  

■ Optimal substructure: optimal solution to problem 

consists of optimal solutions to subproblems 

■ Overlapping subproblems: few subproblems in 

total, many recurring instances of each 

■ Basic approach: 

○ Build a table of solved subproblems that are used to 

solve larger ones 

○ What is the difference between memoization and 

dynamic programming? 

○ Why might the latter be more efficient? 



Review: Greedy Algorithms 

● A greedy algorithm always makes the choice 

that looks best at the moment 

■ The hope: a locally optimal choice will lead to a 

globally optimal solution 

■ For some problems, it works 

○ Yes: fractional knapsack problem 

○ No: playing a bridge hand 

● Dynamic programming can be overkill; greedy 

algorithms tend to be easier to code 



Review: Activity-Selection Problem 

● The activity selection problem: get your 

money’s worth out of a carnival 
■ Buy a wristband that lets you onto any ride 

■ Lots of rides, starting and ending at different times 

■ Your goal: ride as many rides as possible 

● Naïve first-year CS major strategy:  

■ Ride the first ride, when get off, get on the very 

next ride possible, repeat until carnival ends 

● What is the sophisticated third-year strategy? 



Review: Activity-Selection 

● Formally: 

■ Given a set S of n activities 

○ si = start time of activity i  fi = finish time of activity i 

■ Find max-size subset A of compatible activities 

■ Assume activities sorted by finish time 

● What is optimal substructure for this problem? 



Review: Activity-Selection 

● Formally: 

■ Given a set S of n activities 

○ si = start time of activity i  fi = finish time of activity i 

■ Find max-size subset A of compatible activities 

■ Assume activities sorted by finish time 

● What is optimal substructure for this problem? 

■ A: If k is the activity in A with the earliest finish 

time, then A - {k} is an optimal solution to  

S’ = {i  S: si  fk} 



Review: Greedy Choice Property 

For Activity Selection 

● Dynamic programming? Memoize? Yes, but… 

● Activity selection problem also exhibits the 

greedy choice property: 

■ Locally optimal choice  globally optimal sol’n 

■ Them 17.1: if S is an activity selection problem 

sorted by finish time, then  optimal solution  

A  S such that {1}  A 

○ Sketch of proof: if  optimal solution B that does not 

contain {1}, can always replace first activity in B with 

{1} (Why?).  Same number of activities, thus optimal. 



Review:  

The Knapsack Problem 

● The 0-1 knapsack problem: 

■ A thief must choose among n items, where the ith 

item worth vi dollars and weighs wi pounds 

■ Carrying at most W pounds, maximize value 

● A variation, the fractional knapsack problem: 

■ Thief can take fractions of items 

■ Think of items in 0-1 problem as gold ingots, in 

fractional problem as buckets of gold dust 

● What greedy choice algorithm works for the 

fractional problem but not the 0-1 problem? 



NP-Completeness 

● Some problems are intractable:  

as they grow large, we are unable to solve 

them in reasonable time 

● What constitutes reasonable time? Standard 

working definition: polynomial time 

■ On an input of size n the worst-case running time 

is O(nk) for some constant k 

■ Polynomial time: O(n2), O(n3), O(1), O(n lg n)  

■ Not in polynomial time: O(2n), O(nn), O(n!) 

 



Polynomial-Time Algorithms 

● Are some problems solvable in polynomial 

time? 

■ Of course: every algorithm we’ve studied provides 
polynomial-time solution to some problem 

■ We define P to be the class of problems solvable in 

polynomial time 

● Are all problems solvable in polynomial time? 

■ No: Turing’s “Halting Problem” is not solvable by 
any computer, no matter how much time is given 

■ Such problems are clearly intractable, not in P 



NP-Complete Problems 

● The NP-Complete problems are an interesting 

class of problems whose status is unknown  

■ No polynomial-time algorithm has been 

discovered for an NP-Complete problem 

■ No suprapolynomial lower bound has been proved 

for any NP-Complete problem, either 

● We call this the P = NP question 

■ The biggest open problem in CS 



An NP-Complete Problem: 

Hamiltonian Cycles 

● An example of an NP-Complete problem: 

■ A hamiltonian cycle of an undirected graph is a 

simple cycle that contains every vertex 

■ The hamiltonian-cycle problem: given a graph G, 

does it have a hamiltonian cycle? 

○ Draw on board: dodecahedron, odd bipartite graph 

■ Describe a naïve algorithm for solving the 

hamiltonian-cycle problem.  Running time? 

 



P and NP 

● As mentioned, P is set of problems that can be 

solved in polynomial time 

● NP (nondeterministic polynomial time) is the 

set of problems that can be solved in 

polynomial time by a nondeterministic 

computer 

■ What the hell is that? 

 



Nondeterminism 

● Think of a non-deterministic computer as a 

computer that magically “guesses” a solution, 
then has to verify that it is correct 

■ If a solution exists, computer always guesses it 

■ One way to imagine it: a parallel computer that can 

freely spawn an infinite number of processes 

○ Have one processor work on each possible solution 

○ All processors attempt to verify that their solution works 

○ If a processor finds it has a working solution 

■ So: NP = problems verifiable in polynomial time 



P and NP 

● Summary so far: 

■ P = problems that can be solved in polynomial time 

■ NP = problems for which a solution can be verified 

in polynomial time 

■ Unknown whether P = NP (most suspect not) 

● Hamiltonian-cycle problem is in NP: 

■ Cannot solve in polynomial time 

■ Easy to verify solution in polynomial time (How?) 



NP-Complete Problems 

● We will see that NP-Complete problems are 

the “hardest” problems in NP: 
■ If any one NP-Complete problem can be solved in 

polynomial time… 

■ …then every NP-Complete problem can be solved 

in polynomial time… 

■ …and in fact every problem in NP can be solved in 

polynomial time (which would show P = NP) 

■ Thus: solve hamiltonian-cycle in O(n100) time, 

you’ve proved that P = NP.  Retire rich & famous. 



Reduction 

● The crux of NP-Completeness is reducibility 

■ Informally, a problem P can be reduced to another 

problem Q if any instance of P can be “easily 
rephrased” as an instance of Q, the solution to which 
provides a solution to the instance of P 

○ What do you suppose “easily” means? 

○ This rephrasing is called transformation 

■ Intuitively: If P reduces to Q, P is “no harder to 
solve” than Q 



Reducibility 

● An example: 

■ P: Given a set of Booleans, is at least one TRUE? 

■ Q: Given a set of integers, is their sum positive? 

■ Transformation: (x1, x2, …, xn) = (y1, y2, …, yn) 

where yi = 1 if xi = TRUE, yi = 0 if xi = FALSE 

● Another example:  

■ Solving linear equations is reducible to solving 

quadratic equations 

○ How can we easily use a quadratic-equation solver to 

solve linear equations? 



Using Reductions 

● If P is polynomial-time reducible to Q, we 

denote this P p Q 

● Definition of NP-Complete:  

■ If P is NP-Complete, P  NP and all problems R 

are reducible to P 

■ Formally: R p P  R  NP  

● If P p Q and P is NP-Complete, Q is also NP-

Complete 

■ This is the key idea you should take away today 



Coming Up 

● Given one NP-Complete problem, we can 

prove many interesting problems NP-Complete 

■ Graph coloring (= register allocation) 

■ Hamiltonian cycle 

■ Hamiltonian path 

■ Knapsack problem 

■ Traveling salesman 

■ Job scheduling with penalities 

■ Many, many more 


