Algorithms

NP Completeness

Review: Dynamic Programming

- When applicable:
- Optimal substructure: optimal solution to problem consists of optimal solutions to subproblems
- Overlapping subproblems: few subproblems in total, many recurring instances of each
- Basic approach:
- Build a table of solved subproblems that are used to solve larger ones
- What is the difference between memoization and dynamic programming?
- Why might the latter be more efficient?

Review: Greedy Algorithms

- A greedy algorithm always makes the choice that looks best at the moment

■ The hope: a locally optimal choice will lead to a globally optimal solution
■ For some problems, it works

- Yes: fractional knapsack problem
\circ No: playing a bridge hand
- Dynamic programming can be overkill; greedy algorithms tend to be easier to code

Review: Activity-Selection Problem

- The activity selection problem: get your money's worth out of a carnival
- Buy a wristband that lets you onto any ride
- Lots of rides, starting and ending at different times
- Your goal: ride as many rides as possible
- Naïve first-year CS major strategy:
- Ride the first ride, when get off, get on the very next ride possible, repeat until carnival ends
- What is the sophisticated third-year strategy?

Review: Activity-Selection

- Formally:
- Given a set S of n activities
- $s_{i}=$ start time of activity $i \quad f_{i}=$ finish time of activity i
- Find max-size subset A of compatible activities
- Assume activities sorted by finish time
- What is optimal substructure for this problem?

Review: Activity-Selection

- Formally:
- Given a set S of n activities
- $s_{i}=$ start time of activity $i \quad f_{i}=$ finish time of activity i
- Find max-size subset A of compatible activities
- Assume activities sorted by finish time
- What is optimal substructure for this problem?
- A: If k is the activity in A with the earliest finish time, then $A-\{k\}$ is an optimal solution to
$S^{\prime}=\left\{i \in S: s_{i} \geq f_{k}\right\}$

Review: Greedy Choice Property For Activity Selection

- Dynamic programming? Memoize? Yes, but...
- Activity selection problem also exhibits the greedy choice property:
- Locally optimal choice \Rightarrow globally optimal sol'n
- Them 17.1: if S is an activity selection problem sorted by finish time, then \exists optimal solution $A \subseteq S$ such that $\{1\} \in A$
- Sketch of proof: if \exists optimal solution B that does not contain $\{1\}$, can always replace first activity in B with $\{1\}$ (Why?). Same number of activities, thus optimal.

Review:

The Knapsack Problem

- The 0-1 knapsack problem:
- A thief must choose among n items, where the i th item worth v_{i} dollars and weighs w_{i} pounds
■ Carrying at most W pounds, maximize value
- A variation, the fractional knapsack problem:
- Thief can take fractions of items
- Think of items in 0-1 problem as gold ingots, in fractional problem as buckets of gold dust
- What greedy choice algorithm works for the fractional problem but not the 0-1 problem?

NP-Completeness

- Some problems are intractable: as they grow large, we are unable to solve them in reasonable time
- What constitutes reasonable time? Standard working definition: polynomial time
- On an input of size n the worst-case running time is $\mathrm{O}\left(n^{k}\right)$ for some constant k
- Polynomial time: $\mathrm{O}\left(\mathrm{n}^{2}\right), \mathrm{O}\left(\mathrm{n}^{3}\right), \mathrm{O}(1), \mathrm{O}(\mathrm{n} \lg \mathrm{n})$
- Not in polynomial time: $\mathrm{O}\left(2^{n}\right), \mathrm{O}\left(n^{\mathrm{n}}\right), \mathrm{O}(n!)$

Polynomial-Time Algorithms

- Are some problems solvable in polynomial time?

■ Of course: every algorithm we've studied provides polynomial-time solution to some problem
■ We define \mathbf{P} to be the class of problems solvable in polynomial time

- Are all problems solvable in polynomial time?
- No: Turing's "Halting Problem" is not solvable by any computer, no matter how much time is given
■ Such problems are clearly intractable, not in \mathbf{P}

NP-Complete Problems

- The NP-Complete problems are an interesting class of problems whose status is unknown
■ No polynomial-time algorithm has been discovered for an NP-Complete problem
- No suprapolynomial lower bound has been proved for any NP-Complete problem, either
- We call this the $P=N P$ question
- The biggest open problem in CS

An NP-Complete Problem: Hamiltonian Cycles

- An example of an NP-Complete problem:
- A hamiltonian cycle of an undirected graph is a simple cycle that contains every vertex
- The hamiltonian-cycle problem: given a graph G, does it have a hamiltonian cycle?
- Draw on board: dodecahedron, odd bipartite graph
- Describe a naïve algorithm for solving the hamiltonian-cycle problem. Running time?

P and $N P$

- As mentioned, \mathbf{P} is set of problems that can be solved in polynomial time
- NP (nondeterministic polynomial time) is the set of problems that can be solved in polynomial time by a nondeterministic computer
- What the hell is that?

Nondeterminism

- Think of a non-deterministic computer as a computer that magically "guesses" a solution, then has to verify that it is correct
$■$ If a solution exists, computer always guesses it
- One way to imagine it: a parallel computer that can freely spawn an infinite number of processes
- Have one processor work on each possible solution
- All processors attempt to verify that their solution works
- If a processor finds it has a working solution
- So: NP = problems verifiable in polynomial time

P and NP

- Summary so far:
- $\mathbf{P}=$ problems that can be solved in polynomial time
- NP = problems for which a solution can be verified in polynomial time
■ Unknown whether $\mathbf{P}=\mathbf{N P}$ (most suspect not)
- Hamiltonian-cycle problem is in NP:
- Cannot solve in polynomial time

■ Easy to verify solution in polynomial time (How?)

NP-Complete Problems

- We will see that NP-Complete problems are the "hardest" problems in NP:
- If any one NP-Complete problem can be solved in polynomial time...
■ ...then every NP-Complete problem can be solved in polynomial time...
- ... and in fact every problem in NP can be solved in polynomial time (which would show $\mathbf{P}=\mathbf{N P}$)
■ Thus: solve hamiltonian-cycle in $\mathrm{O}\left(n^{100}\right)$ time, you've proved that $\mathbf{P}=\mathbf{N P}$. Retire rich \& famous.

Reduction

- The crux of NP-Completeness is reducibility
- Informally, a problem P can be reduced to another problem Q if any instance of P can be "easily rephrased" as an instance of Q, the solution to which provides a solution to the instance of P
- What do you suppose "easily" means?
- This rephrasing is called transformation
- Intuitively: If P reduces to Q, P is "no harder to solve" than Q

Reducibility

- An example:
- P: Given a set of Booleans, is at least one TRUE?

■ Q: Given a set of integers, is their sum positive?
■ Transformation: $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{n}\right)=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{n}\right)$ where $\mathrm{y}_{i}=1$ if $\mathrm{x}_{i}=$ TRUE, $\mathrm{y}_{i}=0$ if $\mathrm{x}_{i}=$ FALSE

- Another example:
- Solving linear equations is reducible to solving quadratic equations
- How can we easily use a quadratic-equation solver to solve linear equations?

Using Reductions

- If P is polynomial-time reducible to Q , we denote this $\mathrm{P} \leq_{\mathrm{p}} \mathrm{Q}$
- Definition of NP-Complete:
- If P is NP -Complete, $\mathrm{P} \in \mathbf{N P}$ and all problems R are reducible to P
- Formally: $\mathrm{R} \leq_{\mathrm{p}} \mathrm{P} \forall \mathrm{R} \in \mathbf{N P}$
- If $\mathrm{P} \leq_{\mathrm{p}} \mathrm{Q}$ and P is NP-Complete, Q is also NPComplete
- This is the key idea you should take away today

Coming Up

- Given one NP-Complete problem, we can prove many interesting problems NP-Complete
- Graph coloring (= register allocation)
- Hamiltonian cycle
- Hamiltonian path
- Knapsack problem
- Traveling salesman
- Job scheduling with penalities
- Many, many more

