
Algorithms 

NP Completeness Continued 



Homework 5 

● Extension: due midnight Monday 22 April 



Review: Tractibility 

● Some problems are undecidable: no computer 

can solve them 

■ E.g., Turing’s “Halting Problem” 

■ We don’t care about such problems here; take a 
theory class 

● Other problems are decidable, but intractable:  

as they grow large, we are unable to solve 

them in reasonable time 

■ What constitutes “reasonable time”? 

 



Review: P 

● Some problems are provably decidable in 

polynomial time on an ordinary computer 

■ We say such problems belong to the set P 

■ Technically, a computer with unlimited memory 

■ How do we typically prove a problem  P? 



Review: NP 

● Some problems are provably decidable in 

polynomial time on a nondeterministic 

computer 

■ We say such problems belong to the set NP 

■ Can think of a nondeterministic computer as a 

parallel machine that can freely spawn an infinite 

number of processes 

■ How do we typically prove a problem  NP? 

● Is P   NP?  Why or why not? 



Review: P And NP Summary 

● P = set of problems that can be solved in 

polynomial time 

● NP = set of problems for which a solution can 

be verified in polynomial time 

● P  NP 

● The big question: Does P = NP? 



Review: NP-Complete Problems 

● The NP-Complete problems are an interesting 

class of problems whose status is unknown  

■ No polynomial-time algorithm has been 

discovered for an NP-Complete problem 

■ No suprapolynomial lower bound has been proved 

for any NP-Complete problem, either 

● Intuitively and informally, what does it mean 

for a problem to be NP-Complete? 



Review: Reduction 

● A problem P can be reduced to another problem 

Q if any instance of P can be rephrased to an 

instance of Q, the solution to which provides a 

solution to the instance of P 

■ This rephrasing is called a transformation 

● Intuitively: If P reduces in polynomial time to 

Q, P is “no harder to solve” than Q 



An Aside: Terminology 

● What is the difference between a problem and 

an instance of that problem? 

● To formalize things, we will express instances 

of problems as strings 

■ How can we express a instance of the hamiltonian 

cycle problem as a string? 

● To simplify things, we will worry only about 

decision problems with a yes/no answer 

■ Many problems are optimization problems, but we 

can often re-cast those as decision problems 



NP-Hard and NP-Complete 

● If P is polynomial-time reducible to Q, we 

denote this P p Q 

● Definition of NP-Hard and NP-Complete:  

■ If all problems R  NP are reducible to P, then P 

is NP-Hard 

■ We say P is NP-Complete if P is NP-Hard  

and P  NP 

■ Note: I got this slightly wrong Friday 

● If P p Q and P is NP-Complete, Q is also 

NP- Complete 



Why Prove NP-Completeness? 

● Though nobody has proven that P != NP, if 

you prove a problem NP-Complete, most 

people accept that it is probably intractable 

● Therefore it can be important to prove that a 

problem is NP-Complete 

■ Don’t need to come up with an efficient algorithm 

■ Can instead work on approximation algorithms 



Proving NP-Completeness 

● What steps do we have to take to prove a 

problem P is NP-Complete? 

■ Pick a known NP-Complete problem Q 

■ Reduce Q to P 

○ Describe a transformation that maps instances of Q to 

instances of P, s.t. “yes” for P = “yes” for Q 

○ Prove the transformation works 

○ Prove it runs in polynomial time 

■ Oh yeah, prove P  NP (What if you can’t?) 


