Algorithms

NP Completeness Continued

Homework 5

- Extension: due midnight Monday 22 April

Review: Tractibility

- Some problems are undecidable: no computer can solve them

■ E.g., Turing's "Halting Problem"

- We don't care about such problems here; take a theory class
- Other problems are decidable, but intractable: as they grow large, we are unable to solve them in reasonable time
- What constitutes "reasonable time"?

Review: \mathbf{P}

- Some problems are provably decidable in polynomial time on an ordinary computer
■ We say such problems belong to the set \mathbf{P}
- Technically, a computer with unlimited memory

■ How do we typically prove a problem $\in \boldsymbol{P}$?

Review: NP

- Some problems are provably decidable in polynomial time on a nondeterministic computer
- We say such problems belong to the set NP
- Can think of a nondeterministic computer as a parallel machine that can freely spawn an infinite number of processes
- How do we typically prove a problem $\in \boldsymbol{N P}$?
- Is $\boldsymbol{P} \subseteq$ NP? Why or why not?

Review: P And NP Summary

- $\mathbf{P}=$ set of problems that can be solved in polynomial time
- NP = set of problems for which a solution can be verified in polynomial time
- $\mathbf{P} \subseteq \mathbf{N P}$
- The big question: Does $\mathbf{P}=\mathbf{N P}$?

Review: NP-Complete Problems

- The NP-Complete problems are an interesting class of problems whose status is unknown
- No polynomial-time algorithm has been discovered for an NP-Complete problem
- No suprapolynomial lower bound has been proved for any NP-Complete problem, either
- Intuitively and informally, what does it mean for a problem to be NP-Complete?

Review: Reduction

- A problem P can be reduced to another problem Q if any instance of P can be rephrased to an instance of Q , the solution to which provides a solution to the instance of P
- This rephrasing is called a transformation
- Intuitively: If P reduces in polynomial time to Q, P is "no harder to solve" than Q

An Aside: Terminology

- What is the difference between a problem and an instance of that problem?
- To formalize things, we will express instances of problems as strings
- How can we express a instance of the hamiltonian cycle problem as a string?
- To simplify things, we will worry only about decision problems with a yes/no answer
- Many problems are optimization problems, but we can often re-cast those as decision problems

NP-Hard and NP-Complete

- If P is polynomial-time reducible to Q , we denote this $\mathrm{P} \leq_{\mathrm{p}} \mathrm{Q}$
- Definition of NP-Hard and NP-Complete:
- If all problems $\mathrm{R} \in \mathbf{N P}$ are reducible to P , then P is NP-Hard
- We say P is $N P$-Complete if P is NP-Hard and $P \in \mathbf{N P}$
- Note: I got this slightly wrong Friday
- If $\mathrm{P} \leq_{\mathrm{p}} \mathrm{Q}$ and P is NP-Complete, Q is also NP- Complete

Why Prove NP-Completeness?

- Though nobody has proven that \mathbf{P} != NP, if you prove a problem NP-Complete, most people accept that it is probably intractable
- Therefore it can be important to prove that a problem is NP-Complete
- Don't need to come up with an efficient algorithm
- Can instead work on approximation algorithms

Proving NP-Completeness

- What steps do we have to take to prove a problem P is NP-Complete?
■ Pick a known NP-Complete problem Q
- Reduce Q to P
- Describe a transformation that maps instances of Q to instances of P, s.t. "yes" for $\mathrm{P}=$ "yes" for Q
- Prove the transformation works
- Prove it runs in polynomial time
- Oh yeah, prove $\mathrm{P} \in \mathbf{N P}$ (What if you can't?)

