Algorithms

NP Completeness Continued: Reductions

Review: P And NP Summary

- **P** = set of problems that can be solved in polynomial time
- NP = set of problems for which a solution can be verified in polynomial time
- $\mathbf{P} \subseteq \mathbf{NP}$
- Open question: Does **P** = **NP**?

Review: Reduction

- A problem P can be *reduced* to another problem Q if any instance of P can be rephrased to an instance of Q, the solution to which provides a solution to the instance of P
 - This rephrasing is called a *transformation*
- Intuitively: If P reduces in polynomial time to Q, P is "no harder to solve" than Q

Review: NP-Hard and NP-Complete

- If P is *polynomial-time reducible* to Q, we denote this P ≤_p Q
- Definition of NP-Hard and NP-Complete:
 - If all problems R ∈ NP are reducible to P, then P is NP-Hard
 - We say P is NP-Complete if P is NP-Hard and P ∈ NP
- If P ≤_p Q and P is NP-Complete, Q is also NP- Complete

Review: Proving NP-Completeness

- What steps do we have to take to prove a problem Q is NP-Complete?
 - Pick a known NP-Complete problem P
 - Reduce P to Q
 - Describe a transformation that maps instances of P to instances of Q, s.t. "yes" for Q = "yes" for P
 - Prove the transformation works
 - Prove it runs in polynomial time
 - Oh yeah, prove $Q \in NP$ (*What if you can't?*)

Directed Hamiltonian Cycle \Rightarrow Undirected Hamiltonian Cycle

- What was the hamiltonian cycle problem again?
- For my next trick, I will reduce the *directed hamiltonian cycle* problem to the *undirected hamiltonian cycle* problem before your eyes
 Which variant and proving NP Complete?
 - Which variant am I proving NP-Complete?
- Draw a directed example on the board

• What transformation do I need to effect?

Transformation: Directed \Rightarrow Undirected Ham. Cycle

- Transform graph G = (V, E) into G' = (V', E'):
 - Every vertex v in V transforms into 3 vertices v^1 , v^2 , v^3 in V' with edges (v^1, v^2) and (v^2, v^3) in E'
 - Every directed edge (v, w) in E transforms into the undirected edge (v³, w¹) in E' (draw it)
 - Can this be implemented in polynomial time?
 - Argue that a directed hamiltonian cycle in G implies an undirected hamiltonian cycle in G'
 - Argue that an undirected hamiltonian cycle in G' implies a directed hamiltonian cycle in G

Undirected Hamiltonian Cycle

- Thus we can reduce the directed problem to the undirected problem
- What's left to prove the undirected hamiltonian cycle problem NP-Complete?
- Argue that the problem is in **NP**

Hamiltonian Cycle \Rightarrow TSP

- The well-known *traveling salesman problem*:
 - Optimization variant: a salesman must travel to *n* cities, visiting each city exactly once and finishing where he begins. How to minimize travel time?
 - Model as complete graph with cost c(*i*,*j*) to go from city *i* to city *j*
- *How would we turn this into a decision problem?*

• A: ask if \exists a TSP with cost < k

Hamiltonian Cycle \Rightarrow TSP

- The steps to prove TSP is NP-Complete:
 - Prove that $TSP \in NP$ (*Argue this*)
 - Reduce the undirected hamiltonian cycle problem to the TSP
 - So if we had a TSP-solver, we could use it to solve the hamilitonian cycle problem in polynomial time
 - *How can we transform an instance of the hamiltonian cycle problem to an instance of the TSP?*
 - Can we do this in polynomial time?

The TSP

• Random asides:

TSPs (and variants) have enormous practical importance

• E.g., for shipping and freighting companies

• Lots of research into good approximation algorithms

Recently made famous as a DNA computing problem