Algorithms

NP Completeness Continued:

Reductions

Review: P And NP Summary

- $\mathbf{P}=$ set of problems that can be solved in polynomial time
- $\mathbf{N P}=$ set of problems for which a solution can be verified in polynomial time
- $\mathbf{P} \subseteq \mathbf{N P}$
- Open question: Does $\mathbf{P}=\mathbf{N P}$?

Review: Reduction

- A problem P can be reduced to another problem Q if any instance of P can be rephrased to an instance of Q , the solution to which provides a solution to the instance of P
- This rephrasing is called a transformation
- Intuitively: If P reduces in polynomial time to Q, P is "no harder to solve" than Q

Review:
 NP-Hard and NP-Complete

- If P is polynomial-time reducible to Q , we denote this $\mathrm{P} \leq_{\mathrm{p}} \mathrm{Q}$
- Definition of NP-Hard and NP-Complete:
- If all problems $\mathrm{R} \in \mathbf{N P}$ are reducible to P , then P is $N P$-Hard
- We say P is $N P$-Complete if P is NP-Hard and $P \in \mathbf{N P}$
- If $\mathrm{P} \leq_{\mathrm{p}} \mathrm{Q}$ and P is NP-Complete, Q is also NP- Complete

Review: Proving NP-Completeness

- What steps do we have to take to prove a problem Q is NP-Complete?
- Pick a known NP-Complete problem P
- Reduce P to Q
- Describe a transformation that maps instances of P to instances of Q , s.t. "yes" for $\mathrm{Q}=$ "yes" for P
- Prove the transformation works
- Prove it runs in polynomial time

■ Oh yeah, prove $\mathrm{Q} \in \mathbf{N P}$ (What if you can't?)

Directed Hamiltonian Cycle \Rightarrow Undirected Hamiltonian Cycle

- What was the hamiltonian cycle problem again?
- For my next trick, I will reduce the directed hamiltonian cycle problem to the undirected hamiltonian cycle problem before your eyes
- Which variant am I proving NP-Complete?
- Draw a directed example on the board
- What transformation do I need to effect?

Transformation:

Directed \Rightarrow Undirected Ham. Cycle

- Transform graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ into $\mathrm{G}^{\prime}=\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right)$:

■ Every vertex v in V transforms into 3 vertices v^{1}, v^{2}, v^{3} in V^{\prime} with edges $\left(v^{1}, v^{2}\right)$ and $\left(v^{2}, v^{3}\right)$ in $\mathrm{E}{ }^{\prime}$
$■$ Every directed edge (v, w) in E transforms into the undirected edge (v^{3}, w^{1}) in E' (draw it)

- Can this be implemented in polynomial time?
- Argue that a directed hamiltonian cycle in G implies an undirected hamiltonian cycle in G '
- Argue that an undirected hamiltonian cycle in G, implies a directed hamiltonian cycle in G

Undirected Hamiltonian Cycle

- Thus we can reduce the directed problem to the undirected problem
- What's left to prove the undirected hamiltonian cycle problem NP-Complete?
- Argue that the problem is in NP

Hamiltonian Cycle \Rightarrow TSP

- The well-known traveling salesman problem:
- Optimization variant: a salesman must travel to n cities, visiting each city exactly once and finishing where he begins. How to minimize travel time?
- Model as complete graph with cost $\mathrm{c}(i, j)$ to go from city i to city j
- How would we turn this into a decision problem?
- A: ask if \exists a TSP with cost $<k$

Hamiltonian Cycle \Rightarrow TSP

- The steps to prove TSP is NP-Complete:
- Prove that TSP $\in \mathbf{N P}$ (Argue this)
- Reduce the undirected hamiltonian cycle problem to the TSP
- So if we had a TSP-solver, we could use it to solve the hamilitonian cycle problem in polynomial time
- How can we transform an instance of the hamiltonian cycle problem to an instance of the TSP?
- Can we do this in polynomial time?

The TSP

- Random asides:
- TSPs (and variants) have enormous practical importance
- E.g., for shipping and freighting companies
- Lots of research into good approximation algorithms
- Recently made famous as a DNA computing problem

