
Algorithms

NP Completeness Continued:

Reductions

Review: P and NP

● What do we mean when we say a problem

is in P?

● What do we mean when we say a problem

is in NP?

● What is the relation between P and NP?

Review: P and NP

● What do we mean when we say a problem

is in P?

■ A: A solution can be found in polynomial time

● What do we mean when we say a problem

is in NP?

■ A: A solution can be verified in polynomial time

● What is the relation between P and NP?

■ A: P  NP, but no one knows whether P = NP

Review: NP-Complete

● What, intuitively, does it mean if we can

reduce problem P to problem Q?

● How do we reduce P to Q?

● What does it mean if Q is NP-Hard?

● What does it mean if Q is NP-Complete?

Review: NP-Complete

● What, intuitively, does it mean if we can

reduce problem P to problem Q?

■ P is “no harder than” Q

● How do we reduce P to Q?

■ Transform instances of P to instances of Q in

polynomial time s.t. Q: “yes” iff P: “yes”

● What does it mean if Q is NP-Hard?

■ Every problem PNP p Q

● What does it mean if Q is NP-Complete?

■ Q is NP-Hard and Q  NP

Review:

Proving Problems NP-Complete

● How do we usually prove that a problem R

is NP-Complete?

● A: Show R NP, and reduce a known

NP-Complete problem Q to R

Review:

Directed  Undirected Ham. Cycle

● Given: directed hamiltonian cycle is

NP-Complete (draw the example)

● Transform graph G = (V, E) into G’ = (V’, E’):
■ Every vertex v in V transforms into 3 vertices

v1, v2, v3 in V’ with edges (v1,v2) and (v2,v3) in E’
■ Every directed edge (v, w) in E transforms into the

undirected edge (v3, w1) in E’ (draw it)

Review:

Directed  Undirected Ham. Cycle

● Prove the transformation correct:

■ If G has directed hamiltonian cycle, G’ will have
undirected cycle (straightforward)

■ If G’ has an undirected hamiltonian cycle, G will
have a directed hamiltonian cycle

○ The three vertices that correspond to a vertex v in G

must be traversed in order v1, v2, v3 or v3, v2, v1, since v2

cannot be reached from any other vertex in G’
○ Since 1’s are connected to 3’s, the order is the same for

all triples. Assume w.l.o.g. order is v1, v2, v3.

○ Then G has a corresponding directed hamiltonian cycle

Review: Hamiltonian Cycle  TSP

● The well-known traveling salesman problem:

■ Complete graph with cost c(i,j) from city i to city j

■  a simple cycle over cities with cost < k ?

● How can we prove the TSP is NP-Complete?

● A: Prove TSP  NP; reduce the undirected

hamiltonian cycle problem to TSP

■ TSP  NP: straightforward

■ Reduction: need to show that if we can solve TSP

we can solve ham. cycle problem

Review: Hamiltonian Cycle  TSP

● To transform ham. cycle problem on graph

G = (V,E) to TSP, create graph G’ = (V,E’):
■ G’ is a complete graph
■ Edges in E’ also in E have weight 0

■ All other edges in E’ have weight 1

■ TSP: is there a TSP on G’ with weight 0?

○ If G has a hamiltonian cycle, G’ has a cycle w/ weight 0

○ If G’ has cycle w/ weight 0, every edge of that cycle has
weight 0 and is thus in G. Thus G has a ham. cycle

The SAT Problem

● One of the first problems to be proved NP-

Complete was satisfiability (SAT):

■ Given a Boolean expression on n variables, can we

assign values such that the expression is TRUE?

■ Ex: ((x1 x2)  ((x1  x3)  x4)) x2

■ Cook’s Theorem: The satisfiability problem is

NP-Complete

○ Note: Argue from first principles, not reduction

○ Proof: not here

Conjunctive Normal Form

● Even if the form of the Boolean expression is

simplified, the problem may be NP-Complete

■ Literal: an occurrence of a Boolean or its negation

■ A Boolean formula is in conjunctive normal form,

or CNF, if it is an AND of clauses, each of which is

an OR of literals

○ Ex: (x1  x2)  (x1  x3  x4)  (x5)

■ 3-CNF: each clause has exactly 3 distinct literals

○ Ex: (x1  x2  x3)  (x1  x3  x4)  (x5  x3  x4)

○ Notice: true if at least one literal in each clause is true

The 3-CNF Problem

● Thm 36.10: Satisfiability of Boolean formulas

in 3-CNF form (the 3-CNF Problem) is NP-

Complete

■ Proof: Nope

● The reason we care about the 3-CNF problem

is that it is relatively easy to reduce to others

■ Thus by proving 3-CNF NP-Complete we can

prove many seemingly unrelated problems

NP-Complete

3-CNF  Clique

● What is a clique of a graph G?

● A: a subset of vertices fully connected to each

other, i.e. a complete subgraph of G

● The clique problem: how large is the

maximum-size clique in a graph?

● Can we turn this into a decision problem?

● A: Yes, we call this the k-clique problem

● Is the k-clique problem within NP?

3-CNF  Clique

● What should the reduction do?

● A: Transform a 3-CNF formula to a graph, for

which a k-clique will exist (for some k) iff the

3-CNF formula is satisfiable

3-CNF  Clique

● The reduction:

■ Let B = C1  C2  …  Ck be a 3-CNF formula

with k clauses, each of which has 3 distinct literals

■ For each clause put a triple of vertices in the graph,

one for each literal

■ Put an edge between two vertices if they are in

different triples and their literals are consistent,

meaning not each other’s negation

■ Run an example:

B = (x  y  z)  (x  y  z)  (x  y  z)

3-CNF  Clique

● Prove the reduction works:

■ If B has a satisfying assignment, then each clause

has at least one literal (vertex) that evaluates to 1

■ Picking one such “true” literal from each clause
gives a set V’ of k vertices. V’ is a clique (Why?)

■ If G has a clique V’ of size k, it must contain one
vertex in each triple (clause) (Why?)

■ We can assign 1 to each literal corresponding with

a vertex in V’, without fear of contradiction

Clique  Vertex Cover

● A vertex cover for a graph G is a set of vertices

incident to every edge in G

● The vertex cover problem: what is the

minimum size vertex cover in G?

● Restated as a decision problem: does a vertex

cover of size k exist in G?

● Thm 36.12: vertex cover is NP-Complete

Clique  Vertex Cover

● First, show vertex cover in NP (How?)

● Next, reduce k-clique to vertex cover

■ The complement GC of a graph G contains exactly

those edges not in G

■ Compute GC in polynomial time

■ G has a clique of size k iff GC has a vertex cover of

size |V| - k

Clique  Vertex Cover

● Claim: If G has a clique of size k, GC has a

vertex cover of size |V| - k

■ Let V’ be the k-clique

■ Then V - V’ is a vertex cover in GC

○ Let (u,v) be any edge in GC

○ Then u and v cannot both be in V’ (Why?)

○ Thus at least one of u or v is in V-V’ (why?), so

edge (u, v) is covered by V-V’
○ Since true for any edge in GC, V-V’ is a vertex cover

Clique  Vertex Cover

● Claim: If GC has a vertex cover V’  V, with

|V’| = |V| - k, then G has a clique of size k

■ For all u,v  V, if (u,v)  GC then u  V’ or
v  V’ or both (Why?)

■ Contrapositive: if u  V’ and v  V’, then
(u,v)  E

■ In other words, all vertices in V-V’ are connected
by an edge, thus V-V’ is a clique

■ Since |V| - |V’| = k, the size of the clique is k

General Comments

● Literally hundreds of problems have been

shown to be NP-Complete

● Some reductions are profound, some are

comparatively easy, many are easy once the

key insight is given

● You can expect a simple NP-Completeness

proof on the final

Other NP-Complete Problems

● Subset-sum: Given a set of integers, does there

exist a subset that adds up to some target T?

● 0-1 knapsack: when weights not just integers

● Hamiltonian path: Obvious

● Graph coloring: can a given graph be colored

with k colors such that no adjacent vertices are

the same color?

● Etc…

