Algorithms

NP Completeness Continued:

Reductions

Review: P and NP

- What do we mean when we say a problem is in \boldsymbol{P} ?
- What do we mean when we say a problem is in NP?
- What is the relation between \mathbf{P} and NP?

Review: P and NP

- What do we mean when we say a problem is in \boldsymbol{P} ?
- A: A solution can be found in polynomial time
- What do we mean when we say a problem is in NP?
- A: A solution can be verified in polynomial time
- What is the relation between \boldsymbol{P} and NP?
- $\mathrm{A}: \mathbf{P} \subseteq \mathbf{N P}$, but no one knows whether $\mathbf{P}=\mathbf{N} \mathbf{P}$

Review: NP-Complete

- What, intuitively, does it mean if we can reduce problem P to problem Q ?
- How do we reduce P to Q ?
- What does it mean if Q is $N P$-Hard?
- What does it mean if Q is NP-Complete?

Review: NP-Complete

- What, intuitively, does it mean if we can reduce problem P to problem Q ?
- P is "no harder than" Q
- How do we reduce P to Q ?
- Transform instances of P to instances of Q in polynomial time s.t. Q: "yes" iff P: "yes"
- What does it mean if Q is NP-Hard?
- Every problem $\mathrm{P} \in \mathbf{N P} \leq_{\mathrm{p}} \mathrm{Q}$
- What does it mean if Q is NP-Complete?
$■ \mathrm{Q}$ is $\mathrm{NP}-$ Hard and $\mathrm{Q} \in \mathbf{N P}$

Review:
 Proving Problems NP-Complete

- How do we usually prove that a problem R is NP-Complete?
- A: Show $\mathrm{R} \in \mathbf{N P}$, and reduce a known NP-Complete problem Q to R

Review:

Directed \Rightarrow Undirected Ham. Cycle

- Given: directed hamiltonian cycle is NP-Complete (draw the example)
- Transform graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ into $\mathrm{G}^{\prime}=\left(\mathrm{V}^{\prime}, \mathrm{E}^{\prime}\right)$:

■ Every vertex v in V transforms into 3 vertices v^{1}, v^{2}, v^{3} in V^{\prime} with edges $\left(v^{1}, v^{2}\right)$ and $\left(v^{2}, v^{3}\right)$ in E^{\prime}
$■$ Every directed edge (v, w) in E transforms into the undirected edge $\left(v^{3}, w^{1}\right)$ in E^{\prime} (draw it)

Review:

Directed \Rightarrow Undirected Ham. Cycle

- Prove the transformation correct:
- If G has directed hamiltonian cycle, G' will have undirected cycle (straightforward)
- If G' has an undirected hamiltonian cycle, G will have a directed hamiltonian cycle
- The three vertices that correspond to a vertex v in G must be traversed in order v^{1}, v^{2}, v^{3} or v^{3}, v^{2}, v^{1}, since v^{2} cannot be reached from any other vertex in G^{\prime}
- Since 1's are connected to 3's, the order is the same for all triples. Assume w.l.o.g. order is v^{1}, v^{2}, v^{3}.
- Then G has a corresponding directed hamiltonian cycle

Review: Hamiltonian Cycle \Rightarrow TSP

- The well-known traveling salesman problem: - Complete graph with cost $\mathrm{c}(i, j)$ from city i to city j - \exists a simple cycle over cities with cost $<k$?
- How can we prove the TSP is NP-Complete?
- A: Prove TSP $\in \mathbf{N P}$; reduce the undirected hamiltonian cycle problem to TSP
- TSP \in NP: straightforward
- Reduction: need to show that if we can solve TSP we can solve ham. cycle problem

Review: Hamiltonian Cycle \Rightarrow TSP

- To transform ham. cycle problem on graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ to TSP, create graph $\mathrm{G}^{\prime}=\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$:
- G^{\prime} is a complete graph
- Edges in E ' also in E have weight 0
- All other edges in E^{\prime} have weight 1
- TSP: is there a TSP on G' with weight 0 ?
- If G has a hamiltonian cycle, G^{\prime} has a cycle $w /$ weight 0
- If G' has cycle w/ weight 0 , every edge of that cycle has weight 0 and is thus in G. Thus G has a ham. cycle

The SAT Problem

- One of the first problems to be proved NPComplete was satisfiability (SAT):
- Given a Boolean expression on n variables, can we assign values such that the expression is TRUE?
$■ \operatorname{Ex}:\left(\left(x_{1} \rightarrow x_{2}\right) \vee \neg\left(\left(\neg x_{1} \leftrightarrow x_{3}\right) \vee x_{4}\right)\right) \wedge \neg x_{2}$
- Cook's Theorem: The satisfiability problem is NP-Complete
- Note: Argue from first principles, not reduction
- Proof: not here

Conjunctive Normal Form

- Even if the form of the Boolean expression is simplified, the problem may be NP-Complete
- Literal: an occurrence of a Boolean or its negation
- A Boolean formula is in conjunctive normal form, or $C N F$, if it is an AND of clauses, each of which is an OR of literals
$\circ \operatorname{Ex}:\left(\mathrm{x}_{1} \vee \neg \mathrm{x}_{2}\right) \wedge\left(\neg \mathrm{x}_{1} \vee \mathrm{x}_{3} \vee \mathrm{x}_{4}\right) \wedge\left(\neg \mathrm{x}_{5}\right)$
- 3-CNF: each clause has exactly 3 distinct literals
\circ Ex: $\left(\mathrm{x}_{1} \vee \neg \mathrm{x}_{2} \vee \neg \mathrm{x}_{3}\right) \wedge\left(\neg \mathrm{x}_{1} \vee \mathrm{x}_{3} \vee \mathrm{x}_{4}\right) \wedge\left(\neg \mathrm{x}_{5} \vee \mathrm{x}_{3} \vee \mathrm{x}_{4}\right)$
- Notice: true if at least one literal in each clause is true

The 3-CNF Problem

- Thm 36.10: Satisfiability of Boolean formulas in 3-CNF form (the 3-CNF Problem) is NPComplete
- Proof: Nope
- The reason we care about the 3-CNF problem is that it is relatively easy to reduce to others
- Thus by proving 3-CNF NP-Complete we can prove many seemingly unrelated problems NP-Complete

3-CNF \rightarrow Clique

- What is a clique of a graph G?
- A: a subset of vertices fully connected to each other, i.e. a complete subgraph of G
- The clique problem: how large is the maximum-size clique in a graph?
- Can we turn this into a decision problem?
- A: Yes, we call this the k-clique problem
- Is the k-clique problem within NP?

3-CNF \rightarrow Clique

- What should the reduction do?
- A: Transform a 3-CNF formula to a graph, for which a k-clique will exist (for some k) iff the 3 -CNF formula is satisfiable

3-CNF \rightarrow Clique

- The reduction:
- Let $\mathrm{B}=\mathrm{C}_{1} \wedge \mathrm{C}_{2} \wedge \ldots \wedge \mathrm{C}_{k}$ be a 3-CNF formula with k clauses, each of which has 3 distinct literals
- For each clause put a triple of vertices in the graph, one for each literal
- Put an edge between two vertices if they are in different triples and their literals are consistent, meaning not each other's negation
- Run an example:

$$
\mathrm{B}=(\mathrm{x} \vee \neg \mathrm{y} \vee \neg \mathrm{z}) \wedge(\neg \mathrm{x} \vee \mathrm{y} \vee \mathrm{z}) \wedge(\mathrm{x} \vee \mathrm{y} \vee \mathrm{z})
$$

3-CNF \rightarrow Clique

- Prove the reduction works:

■ If B has a satisfying assignment, then each clause has at least one literal (vertex) that evaluates to 1

- Picking one such "true" literal from each clause gives a set V' of k vertices. V' is a clique (Why?)
- If G has a clique V^{\prime} of size k, it must contain one vertex in each triple (clause) (Why?)
■ We can assign 1 to each literal corresponding with a vertex in V^{\prime}, without fear of contradiction

Clique \rightarrow Vertex Cover

- A vertex cover for a graph G is a set of vertices incident to every edge in G
- The vertex cover problem: what is the minimum size vertex cover in G ?
- Restated as a decision problem: does a vertex cover of size k exist in G?
- Thm 36.12: vertex cover is NP-Complete

Clique \rightarrow Vertex Cover

- First, show vertex cover in NP (How?)
- Next, reduce k-clique to vertex cover
- The complement G_{C} of a graph G contains exactly those edges not in G
- Compute G_{C} in polynomial time
- G has a clique of size k iff G_{C} has a vertex cover of size $\mid \mathrm{VI}-k$

Clique \rightarrow Vertex Cover

- Claim: If G has a clique of size $k, \mathrm{G}_{\mathrm{C}}$ has a vertex cover of size $\mathrm{IVI}-k$
- Let V' be the k-clique
- Then V - V^{\prime} is a vertex cover in G_{C}
- Let (u, v) be any edge in G_{C}
- Then u and v cannot both be in V^{\prime} (Why?)
- Thus at least one of u or v is in $\mathrm{V}-\mathrm{V}^{\prime}$ (why?), so edge (u, v) is covered by $\mathrm{V}-\mathrm{V}^{\prime}$
- Since true for any edge in $\mathrm{G}_{\mathrm{C}}, \mathrm{V}-\mathrm{V}^{\prime}$ is a vertex cover

Clique \rightarrow Vertex Cover

- Claim: If G_{C} has a vertex cover $\mathrm{V}^{\prime} \subseteq \mathrm{V}$, with $\left|\mathrm{V}^{\prime}\right|=|\mathrm{V}|-k$, then G has a clique of size k
- For all $u, v \in \mathrm{~V}$, if $(u, v) \in \mathrm{G}_{\mathrm{C}}$ then $u \in \mathrm{~V}^{\prime}$ or $v \in \mathrm{~V}^{\prime}$ or both (Why?)
- Contrapositive: if $u \notin \mathrm{~V}^{\prime}$ and $v \notin \mathrm{~V}^{\prime}$, then $(u, v) \in \mathrm{E}$
■ In other words, all vertices in V-V' are connected by an edge, thus $\mathrm{V}-\mathrm{V}^{\prime}$ is a clique
- Since $|\mathrm{V}|-\left|\mathrm{V}^{\prime}\right|=k$, the size of the clique is k

General Comments

- Literally hundreds of problems have been shown to be NP-Complete
- Some reductions are profound, some are comparatively easy, many are easy once the key insight is given
- You can expect a simple NP-Completeness proof on the final

Other NP-Complete Problems

- Subset-sum: Given a set of integers, does there exist a subset that adds up to some target T ?
- 0-1 knapsack: when weights not just integers
- Hamiltonian path: Obvious
- Graph coloring: can a given graph be colored with k colors such that no adjacent vertices are the same color?
- Etc...

