Algorithms

NP Completeness Continued: Reductions

Review: **P** and **NP**

- What do we mean when we say a problem is in **P**?
- What do we mean when we say a problem is in **NP**?
- What is the relation between **P** and **NP**?

Review: P and NP

- What do we mean when we say a problem is in **P**?
 - A: A solution can be found in polynomial time
- What do we mean when we say a problem is in **NP**?
 - A: A solution can be verified in polynomial time
- What is the relation between **P** and **NP**?

• A: $\mathbf{P} \subseteq \mathbf{NP}$, but no one knows whether $\mathbf{P} = \mathbf{NP}$

Review: NP-Complete

- What, intuitively, does it mean if we can reduce problem P to problem Q?
- How do we reduce P to Q?
- What does it mean if Q is NP-Hard?
- What does it mean if Q is NP-Complete?

Review: NP-Complete

- What, intuitively, does it mean if we can reduce problem P to problem Q?
 P is "no harder than" Q
- How do we reduce P to Q?
 - Transform instances of P to instances of Q in polynomial time s.t. Q: "yes" iff P: "yes"
- What does it mean if Q is NP-Hard?

• Every problem $P \in \mathbf{NP} \leq_p Q$

What does it mean if Q is NP-Complete?
■ Q is NP-Hard and Q ∈ NP

Review:

Proving Problems NP-Complete

- *How do we usually prove that a problem R is NP-Complete?*
- A: Show R ∈ NP, and reduce a known NP-Complete problem Q to R

Review:

Directed \Rightarrow Undirected Ham. Cycle

- Given: directed hamiltonian cycle is NP-Complete (draw the example)
- Transform graph G = (V, E) into G' = (V', E'):
 - Every vertex v in V transforms into 3 vertices v^1 , v^2 , v^3 in V' with edges (v^1, v^2) and (v^2, v^3) in E'
 - Every directed edge (v, w) in E transforms into the undirected edge (v³, w¹) in E' (draw it)

Review:

Directed \Rightarrow Undirected Ham. Cycle

- Prove the transformation correct:
 - If G has directed hamiltonian cycle, G' will have undirected cycle (straightforward)
 - If G' has an undirected hamiltonian cycle, G will have a directed hamiltonian cycle
 - The three vertices that correspond to a vertex *v* in G must be traversed in order *v*¹, *v*², *v*³ or *v*³, *v*², *v*¹, since *v*² cannot be reached from any other vertex in G'
 - Since 1's are connected to 3's, the order is the same for all triples. Assume w.l.o.g. order is v^1 , v^2 , v^3 .
 - Then G has a corresponding directed hamiltonian cycle

Review: Hamiltonian Cycle \Rightarrow TSP

- The well-known *traveling salesman problem*:
 - Complete graph with cost c(*i*,*j*) from city *i* to city *j*∃ a simple cycle over cities with cost < *k* ?
- *How can we prove the TSP is NP-Complete?*
- A: Prove TSP ∈ NP; reduce the undirected hamiltonian cycle problem to TSP
 - **TSP** \in **NP**: straightforward
 - Reduction: need to show that if we can solve TSP we can solve ham. cycle problem

Review: Hamiltonian Cycle \Rightarrow TSP

- To transform ham. cycle problem on graph G = (V,E) to TSP, create graph G' = (V,E'):
 - G' is a complete graph
 - Edges in E' also in E have weight 0
 - All other edges in E' have weight 1
 - TSP: is there a TSP on G' with weight 0?
 - \circ If G has a hamiltonian cycle, G' has a cycle w/ weight 0
 - If G' has cycle w/ weight 0, every edge of that cycle has weight 0 and is thus in G. Thus G has a ham. cycle

The SAT Problem

- One of the first problems to be proved NP-Complete was *satisfiability* (SAT):
 - Given a Boolean expression on *n* variables, can we assign values such that the expression is TRUE?
 - Ex: $((x_1 \rightarrow x_2) \lor \neg ((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2$
 - Cook's Theorem: The satisfiability problem is NP-Complete
 - Note: Argue from first principles, not reduction
 - **Proof: not here**

Conjunctive Normal Form

- Even if the form of the Boolean expression is simplified, the problem may be NP-Complete
 - *Literal*: an occurrence of a Boolean or its negation
 - A Boolean formula is in *conjunctive normal form*, or *CNF*, if it is an AND of clauses, each of which is an OR of literals
 - $\circ Ex: (x_1 \vee \neg x_2) \land (\neg x_1 \vee x_3 \vee x_4) \land (\neg x_5)$
 - *3-CNF*: each clause has exactly 3 distinct literals
 - $\circ Ex: (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor x_4) \land (\neg x_5 \lor x_3 \lor x_4)$
 - Notice: true if at least one literal in each clause is true

The 3-CNF Problem

- Thm 36.10: Satisfiability of Boolean formulas in 3-CNF form (the *3-CNF Problem*) is NP-Complete
 - Proof: Nope
- The reason we care about the 3-CNF problem is that it is relatively easy to reduce to others
 - Thus by proving 3-CNF NP-Complete we can prove many seemingly unrelated problems NP-Complete

- What is a clique of a graph G?
- A: a subset of vertices fully connected to each other, i.e. a complete subgraph of G
- The *clique problem*: how large is the maximum-size clique in a graph?
- Can we turn this into a decision problem?
- A: Yes, we call this the *k-clique problem*
- Is the k-clique problem within NP?

- What should the reduction do?
- A: Transform a 3-CNF formula to a graph, for which a *k*-clique will exist (for some *k*) iff the 3-CNF formula is satisfiable

• The reduction:

- Let $B = C_1 \land C_2 \land \ldots \land C_k$ be a 3-CNF formula with *k* clauses, each of which has 3 distinct literals
- For each clause put a triple of vertices in the graph, one for each literal
- Put an edge between two vertices if they are in different triples and their literals are *consistent*, meaning not each other's negation
- Run an example:

 $B = (x \lor \neg y \lor \neg z) \land (\neg x \lor y \lor z) \land (x \lor y \lor z)$

- Prove the reduction works:
 - If B has a satisfying assignment, then each clause has at least one literal (vertex) that evaluates to 1
 - Picking one such "true" literal from each clause gives a set V' of k vertices. V' is a clique (Why?)
 - If G has a clique V' of size k, it must contain one vertex in each triple (clause) (*Why?*)
 - We can assign 1 to each literal corresponding with a vertex in V', without fear of contradiction

- A *vertex cover* for a graph G is a set of vertices incident to every edge in G
- The *vertex cover problem*: what is the minimum size vertex cover in G?
- Restated as a decision problem: does a vertex cover of size *k* exist in G?
- Thm 36.12: vertex cover is NP-Complete

- First, show vertex cover in **NP** (*How*?)
- Next, reduce *k*-clique to vertex cover
 - The *complement* G_C of a graph G contains exactly those edges not in G
 - Compute G_C in polynomial time
 - G has a clique of size k iff G_C has a vertex cover of size |V| k

- Claim: If G has a clique of size k, G_C has a vertex cover of size |V| k
 - Let V' be the *k*-clique
 - Then V V' is a vertex cover in G_C
 - Let (u, v) be any edge in G_C
 - Then u and v cannot both be in V' (*Why*?)
 - Thus at least one of *u* or *v* is in V-V' (*why?*), so edge (*u*, *v*) is covered by V-V'
 - Since true for *any* edge in G_C , V-V' is a vertex cover

- Claim: If G_C has a vertex cover $V' \subseteq V$, with |V'| = |V| k, then G has a clique of size k
 - For all $u, v \in V$, if $(u, v) \in G_C$ then $u \in V'$ or $v \in V'$ or both (*Why*?)
 - Contrapositive: if $u \notin V'$ and $v \notin V'$, then $(u,v) \in E$
 - In other words, all vertices in V-V' are connected by an edge, thus V-V' is a clique
 - Since |V| |V'| = k, the size of the clique is k

General Comments

- Literally hundreds of problems have been shown to be NP-Complete
- Some reductions are profound, some are comparatively easy, many are easy once the key insight is given
- You can expect a simple NP-Completeness proof on the final

Other NP-Complete Problems

- *Subset-sum*: Given a set of integers, does there exist a subset that adds up to some target *T*?
- *0-1 knapsack*: when weights not just integers
- *Hamiltonian path*: Obvious
- *Graph coloring*: can a given graph be colored with *k* colors such that no adjacent vertices are the same color?
- Etc...