
Algorithms 

NP Completeness Continued: 

Reductions 



Review: P and NP 

● What do we mean when we say a problem  

is in P? 

● What do we mean when we say a problem  

is in NP? 

● What is the relation between P and NP? 

 



Review: P and NP 

● What do we mean when we say a problem  

is in P? 

■ A: A solution can be found in polynomial time 

● What do we mean when we say a problem  

is in NP? 

■ A: A solution can be verified in polynomial time 

● What is the relation between P and NP? 

■ A: P  NP, but no one knows whether P = NP 

 



Review: NP-Complete 

● What, intuitively, does it mean if we can 

reduce problem P to problem Q? 

● How do we reduce P to Q? 

● What does it mean if Q is NP-Hard? 

● What does it mean if Q is NP-Complete? 



Review: NP-Complete 

● What, intuitively, does it mean if we can 

reduce problem P to problem Q? 

■ P is “no harder than” Q 

● How do we reduce P to Q? 

■ Transform instances of P to instances of Q in 

polynomial time s.t. Q: “yes” iff P: “yes” 

● What does it mean if Q is NP-Hard? 

■ Every problem PNP p Q 

● What does it mean if Q is NP-Complete? 

■ Q is NP-Hard and Q  NP 



Review:  

Proving Problems NP-Complete 

● How do we usually prove that a problem R 

is NP-Complete? 

● A: Show R NP, and reduce a known  

NP-Complete problem Q to R 



Review:  

Directed  Undirected Ham. Cycle  

● Given: directed hamiltonian cycle is  

NP-Complete (draw the example) 

● Transform graph G = (V, E) into G’ = (V’, E’): 
■ Every vertex v in V transforms into 3 vertices  

v1, v2, v3 in V’ with edges (v1,v2) and (v2,v3) in E’ 
■ Every directed edge (v, w) in E transforms into the 

undirected edge (v3, w1) in E’ (draw it) 
 



Review: 

Directed   Undirected Ham. Cycle 

● Prove the transformation correct: 

■ If G has directed hamiltonian cycle, G’ will have 
undirected cycle (straightforward) 

■ If G’ has an undirected hamiltonian cycle, G will  
have a directed hamiltonian cycle 

○ The three vertices that correspond to a vertex v in G 

must be traversed in order v1, v2, v3 or v3, v2, v1, since v2 

cannot be reached from any other vertex in G’ 
○ Since 1’s are connected to 3’s, the order is the same for 

all triples.  Assume w.l.o.g. order is  v1, v2, v3. 

○ Then G has a corresponding directed hamiltonian cycle 



Review: Hamiltonian Cycle  TSP 

● The well-known traveling salesman problem: 

■ Complete graph with cost c(i,j) from city i to city j 

■  a simple cycle over cities with cost < k ? 

● How can we prove the TSP is NP-Complete? 

● A: Prove TSP  NP; reduce the undirected 

hamiltonian cycle problem to TSP 

■ TSP  NP: straightforward 

■ Reduction: need to show that if we can solve TSP 

we can solve ham. cycle problem 



Review: Hamiltonian Cycle  TSP 

● To transform ham. cycle problem on graph  

G = (V,E) to TSP, create graph G’ = (V,E’): 
■ G’ is a complete graph  
■ Edges in E’ also in E have weight 0 

■ All other edges in E’ have weight 1 

■ TSP: is there a TSP on G’ with weight 0? 

○ If G has a hamiltonian cycle, G’ has a cycle w/ weight 0 

○ If G’ has cycle w/ weight 0, every edge of that cycle has 
weight 0 and is thus in G.  Thus G has a ham. cycle 



The SAT Problem 

● One of the first problems to be proved NP-

Complete was satisfiability (SAT): 

■ Given a Boolean expression on n variables, can we 

assign values such that the expression is TRUE? 

■ Ex: ((x1 x2)  ((x1  x3)  x4)) x2 

■ Cook’s Theorem: The satisfiability problem is 

NP-Complete 

○ Note: Argue from first principles, not reduction 

○ Proof: not here 



Conjunctive Normal Form 

● Even if the form of the Boolean expression is 

simplified, the problem may be NP-Complete 

■ Literal: an occurrence of a Boolean or its negation 

■ A Boolean formula is in conjunctive normal form, 

or CNF, if it is an AND of clauses, each of which is 

an OR of literals 

○ Ex: (x1  x2)  (x1  x3  x4)  (x5) 

■ 3-CNF: each clause has exactly 3 distinct literals 

○ Ex: (x1  x2  x3)  (x1  x3  x4)  (x5  x3  x4) 

○ Notice: true if at least one literal in each clause is true 

 



The 3-CNF Problem 

● Thm 36.10: Satisfiability of Boolean formulas 

in 3-CNF form (the 3-CNF Problem) is NP-

Complete 

■ Proof: Nope 

● The reason we care about the 3-CNF problem 

is that it is relatively easy to reduce to others  

■ Thus by proving 3-CNF NP-Complete we can 

prove many seemingly unrelated problems  

NP-Complete 



3-CNF  Clique 

● What is a clique of a graph G? 

● A: a subset of vertices fully connected to each 

other, i.e. a complete subgraph of G 

● The clique problem: how large is the 

maximum-size clique in a graph? 

● Can we turn this into a decision problem? 

● A: Yes, we call this the k-clique problem 

● Is the k-clique problem within NP? 



3-CNF  Clique 

● What should the reduction do? 

● A: Transform a 3-CNF formula to a graph, for 

which a k-clique will exist (for some k) iff the 

3-CNF formula is satisfiable 



3-CNF  Clique 

● The reduction: 

■ Let B = C1  C2  …  Ck be a 3-CNF formula 

with k clauses, each of which has 3 distinct literals 

■ For each clause put a triple of vertices in the graph, 

one for each literal 

■ Put an edge between two vertices if they are in 

different triples and their literals are consistent, 

meaning not each other’s negation 

■ Run an example:  

B = (x  y  z)  (x  y  z )  (x  y  z ) 



3-CNF  Clique 

● Prove the reduction works: 

■ If B has a satisfying assignment, then each clause 

has at least one literal (vertex) that evaluates to 1 

■ Picking one such “true” literal from each clause 
gives a set V’ of k vertices.  V’ is a clique (Why?) 

■ If G has a clique V’ of size k, it must contain one 
vertex in each triple (clause) (Why?) 

■ We can assign 1 to each literal corresponding with 

a vertex in V’, without fear of contradiction 



Clique  Vertex Cover 

● A vertex cover for a graph G is a set of vertices 

incident to every edge in G 

● The vertex cover problem: what is the 

minimum size vertex cover in G? 

● Restated as a decision problem: does a vertex 

cover of size k exist in G? 

● Thm 36.12: vertex cover is NP-Complete 



Clique  Vertex Cover 

● First, show vertex cover in NP (How?) 

● Next, reduce k-clique to vertex cover 

■ The complement GC of a graph G contains exactly 

those edges not in G 

■ Compute GC in polynomial time 

■ G has a clique of size k iff GC has a vertex cover of 

size |V| - k  



Clique  Vertex Cover 

● Claim: If G has a clique of size k, GC has a 

vertex cover of size |V| - k  

■ Let V’ be the k-clique 

■ Then V - V’ is a vertex cover in GC 

○ Let (u,v) be any edge in GC 

○ Then u and v cannot both be in V’ (Why?) 

○ Thus at least one of u or v is in V-V’ (why?), so  

edge (u, v) is covered by V-V’ 
○ Since true for any edge in GC, V-V’ is a vertex cover 



Clique  Vertex Cover 

● Claim: If GC has a vertex cover V’  V, with 

|V’| = |V| - k, then G has a clique of size k 

■ For all u,v  V, if (u,v)  GC then u  V’ or  
v  V’ or both (Why?) 

■ Contrapositive: if u  V’ and v  V’, then  
(u,v)  E 

■ In other words, all vertices in V-V’ are connected 
by an edge, thus V-V’ is a clique 

■ Since |V| - |V’| = k, the size of the clique is k 



General Comments 

● Literally hundreds of problems have been 

shown to be NP-Complete 

● Some reductions are profound, some are 

comparatively easy, many are easy once the 

key insight is given 

● You can expect a simple NP-Completeness 

proof on the final 



Other NP-Complete Problems 

● Subset-sum: Given a set of integers, does there 

exist a subset that adds up to some target T? 

● 0-1 knapsack: when weights not just integers 

● Hamiltonian path: Obvious 

● Graph coloring: can a given graph be colored 

with k colors such that no adjacent vertices are 

the same color? 

● Etc…  
 


