Algorithms

Review for Final

Final Exam

e Coverage: the whole semester
e Goal: doable 1n 2 hours

e Cheat sheet: you are allowed two 8’117 sheets,
both sides

Final Exam: Study Tips

e Study tips:
m Study each lecture

m Study the homework and homework solutions

m Study the midterm exams

e Re-make your previous cheat sheets

m | recommend handwriting or typing them

m Think about what you should have had on it the
first time...cheat sheets 1s about identifying
important concepts

Graph Representation

e Adjacency list
e Adjacency matrix

e Tradeoffs:

m What makes a graph dense?
m What makes a graph sparse?
m What about planar graphs?

Basic Graph Algorithms

e Breadth-first search

m What can we use BFS to calculate?

m A: shortest-path distance to source vertex
e Depth-first search

m Tree edges, back edges, cross and forward edges
m What can we use DF'S for?
= A: finding cycles, topological sort

Topological Sort, MST

e Topological sort

m Examples: getting dressed, project dependency

m To what kind of graph does topological sort apply?
e Minimum spanning tree

m Optimal substructure

m Min edge theorem (enables greedy approach)

MST Algorithms

e Prim’s algorithm
m What is the bottleneck in Prim’s algorithm?

m A: priority queue operations

e Kruskal’s algorithm
m What is the bottleneck in Kruskal’s algorithm?

m Answer: depends on disjoint-set implementation
o As covered 1n class, disjoint-set union operations

o As described in book, sorting the edges

Single-Source Shortest Path

e Optimal substructure
e Key idea: relaxation of edges
e What does the Bellman-Ford algorithm do?

m What is the running time?

e What does Dijkstra’s algorithm do?
m What is the running time?

m When does Dijkstra’s algorithm not apply?

Disjoint-Set Union

e We talked about representing sets as linked
lists, every element stores pointer to list head
e What is the cost of merging sets A and B?
m A: O(max(lAl, IBl))

e What is the maximum cost of merging n
1-element sets into a single n-element set?

s A: O(n?)
e How did we improve this? By how much?

m A: always copy smaller into larger: O(n 1g n)

Amortized Analysis

e Idea: worst-case cost of an operation may
overestimate 1ts cost over course of algorithm

e Goal: get a tighter amortized bound on 1ts cost

m Aggregate method: total cost of operation over
course of algorithm divided by # operations

o Example: disjoint-set union
m Accounting method: “charge” a cost to each
operation, accumulate unused cost 1n bank, never
g0 negative

o Example: dynamically-doubling arrays

Dynamic Programming

e Indications: optimal substructure, repeated
subproblems

o What is the difference between memoization
and dynamic programming ?
e A: same basic i1dea, but:

m Memoization: recursive algorithm, looking up
subproblem solutions after computing once

m Dynamic programming: build table of subproblem
solutions bottom-up

LCS Via Dynamic Programming

o Longest common subsequence (LCS) problem:

m Given two sequences x[1..m] and y[1..n], find the
longest subsequence which occurs in both

e Brute-force algorithm: 2™ subsequences of X to
check against n elements of y: O(n 2™)

e Define c[i1,j] = length of LCS of x[1..1], y[1.]

e Theorem:
o cli—1,j—1]+1 it x[i]= y[Jjl,
cli, 7] =
b max(c[i, j—1],c[i—1, j]) otherwise

Greedy Algorithms

e Indicators:
m Optimal substructure

m Greedy choice property: a locally optimal choice
leads to a globally optimal solution

e Example problems:

m Activity selection: Set of activities, with start and
end times. Maximize compatible set of activities.

m Fractional knapsack: sort items by $/1b, then take
items 1n sorted order

s MST

NP-Completeness

o What do we mean when we say a problem
isinP?
m A: A solution can be found 1n polynomial time

e What do we mean when we say a problem

is in NP?

m A: A solution can be verified in polynomial time
e What is the relation between P and NP?

m A: P c NP, but no one knows whether P = NP

Review: NP-Complete

o What, intuitively, does it mean if we can reduce
problem P to problem Q?

m P is “no harder than” Q

e How do we reduce P to Q?

m Transform instances of P to instances of Q in polynomial
time s.t. Q: “yes” iff P: “yes”

o What does it mean if Q is NP-Hard?
= Every problem PENP </ Q

o What does it mean if Q is NP-Complete?
m Qi1s NP-Hard and Q € NP

Review:
Proving Problems NP-Complete

o What was the first problem shown to be
NP-Complete?

e A: Boolean satistiability (SAT), by Cook

e How do we usually prove that a problem R
is NP-Complete?

e A: Show R € NP, and reduce a known
NP-Complete problem Q to R

Review:
Reductions

e Review the reductions we’ve covered:

m Directed hamiltonian cycle = undirected
hamiltonian cycle

s Undirected hamiltonian cycle = traveling
salesman problem

m 3-CNF - k-clique
m k-clique = vertex cover
m Homework 7

Next: Detailed Review

e Up next: a detailed review of the first half of
the course

m The following 100+ slides are intended as a
resource for your studying

m Since you probably remember the more recent
stuff better, I just provide this for the early material

Review: Induction

e Suppose

m S(K) 1s true for fixed constant k
o Oftenk =0

m S(n) A S(n+1) for all n >=k
e Then S(n) 1s true for all n >=k

Proof By Induction

e Claim:S(n) 1s true for all n >=k

e Basis:

m Show formula 1s true when n =k
e Inductive hypothesis:

m Assume formula is true for an arbitrary n
o Step:

s Show that formula 1s then true for n+1

Induction Example:
Gaussian Closed Form

e Provel +2+3+...+n=n(n+l1)/2

m Basis:
o Ifn=0, then 0 = 0(0+1) /2
m Inductive hypothesis:
oAssume 1 +2+3+...+n=nn+1)/2

m Step (show true for n+1):
I1+2+...+n+n+l=(1+2+ ...+ n)+ (n+l)
=n(n+1)/2 + n+1 = [n(n+1) + 2(n+2)]/2
= (n+1)(n+2)2 = (n+1)(n+1 +1)/2

Induction Example:
Geometric Closed Form

e Provea’+al +... +ar=(a"' - 1)/(a- 1) for
alla !=1
m Basis: show that a’ = (a1 - 1)/(a- 1)
0=1=(@!-1/a-1)
m Inductive hypothesis:
oAssume a’+al + ... +a"=(a™! - 1)/(a- 1)
m Step (show true for n+1):

a+al+...+a* =a+al + ... +a" +ar!
— (an+1 _ 1)/(a _ 1) + an+1 — (an+1+1 _ 1)(a _ 1)

Review: Analyzing Algorithms

e We are interested 1n asymptotic analysis:
m Behavior of algorithms as problem size gets large

m Constants, low-order terms don’t matter

An Example: Insertion Sort

_‘30 10 | 40 | 20 i=0 j=0 key=(¢
Aljl =9 Alj+1]1=O

1 2 3 4

‘ InsertionSort (A, n) {
for 1 = 2 to n {
key = A[i]
j=1i-1;
while (j > 0) and (A[j] > key) {
A[j+1] = A[]]
J=3-1
}
A[j+1] = key

An Example: Insertion Sort

key =10
A[j+1]1 =10

10 | 40 20‘ |i=2 =1
A[j] =30
1 2 3 4 D]
InsertionSort (A, n) {
for 1 = 2 to n {
key = A[i]
j=1i-1;
while (j > 0) and (A[j] > key) {
> A[j+1] = A[J]

}

]

=j—1

A[j+1] = key

An Example: Insertion Sort

key =10
Alj+1]1 =30

30 | 40 20‘ |i:2 =1
A[j] =30
1 2 3 4 D]
InsertionSort (A, n) {
for 1 = 2 to n {
key = A[i]
j=1i-1;
while (j > 0) and (A[j] > key) {
— A[j+1] = A[J]

}

]

=j—1

A[j+1] = key

An Example: Insertion Sort

key =10
Alj+1]1 =30

_‘30 30 | 40 20|Ti:2 =1
Al1] = 30
1 2 3 4 D]
InsertionSort (A, n) {
for 1 = 2 to n {
key = A[i]
j=1i-1;
while (j > 0) and (A[j] > key) {
A[j+1] = A[]]
> j=3 -1

}

A[j+1] = key

An Example: Insertion Sort

\30 30 | 40 | 20
‘ |A'=@
1 2 3 4 D]
InsertionSort (A, n) {
for 1 = 2 to n {
key = A[i]
j=1-1;
A[j+1] = A[]]
— =3 -1

i=2 j=0 key=10

Alj+1] =30

while (j > 0) and (A[j] > key) {

}

A[j+1] = key

An Example: Insertion Sort

i=2 j=0 key=10

Alj+1] =30

30 | 40 | 20
‘ |A' =
1 2 3 4 D]
InsertionSort (A, n) {
for 1 = 2 to n {
key = A[i]
j=1-1;

while (j > 0) and (A[j] > key) {

}

A[j+1] = A[]]

]

=j—1

A[j+1] = key

An Example: Insertion Sort

i=2 j=0 key=10

Afj+1] = 10

30 | 40 | 20
‘ |/\' =
1 2 3 4 D]
InsertionSort (A, n) {
for 1 = 2 to n {
key = A[i]
j=1-1;

while (j > 0) and (A[j] > key) {

}

A[j+1] = A[]]

]

=j—1

A[j+1] = key

An Example: Insertion Sort

_‘10 30 | 40 | 20 1i=3 j=0 key=10

2 3 4

InsertionSort (A, n) {
for 1 = 2 to n {
> key = A[i]
j=1-1;
while (j > 0) and (A[j] > key) {
A[j+1] = A[]]
J=3-1
}
A[j+1] = key

An Example: Insertion Sort

_‘10 30 | 40 | 20 1i=3 j=0 key=40
Aljl1=9 Alj+1] =10

2 3 4

InsertionSort (A, n) {
for 1 = 2 to n {
— key = A[i]
j=1-1;
while (j > 0) and (A[j] > key) {
A[j+1] = A[]]
J=3-1
}
A[j+1] = key

An Example: Insertion Sort

_‘10 30 | 40 | 20 1i=3 j=0 key=40
Aljl1=9 Alj+1] =10

2 3 4

InsertionSort (A, n) {
for 1 = 2 to n {
key = A[i]
..‘, j=1-1;
while (j > 0) and (A[j] > key) {
A[j+1] = A[]]
J=3-1
}
A[j+1] = key

An Example: Insertion Sort

i=3 j=2 key=40

Alj+1] = 40

\10 30 | 40 | 20
‘ |1A' = 30
1 2 3 4 D]
InsertionSort (A, n) {
for 1 = 2 to n {
key = A[i]
— J=1-1

while (j > 0) and (A[j] > key) {

}

A[j+1] = A[]]

]

=j—1

A[j+1] = key

An Example: Insertion Sort

i=3 j=2 key=40

Alj+1] = 40

30 | 40 | 20
‘ |1A' = 30
1 2 3 4 D]
InsertionSort (A, n) {
for 1 = 2 to n {
key = A[i]
j=1i-1;

while (j > 0) and (A[j] > key) {

}

A[j+1] = A[]]

]

=j—1

A[j+1] = key

An Example: Insertion Sort

i=3 j=2 key=40

Alj+1] = 40

30 | 40 | 20
‘ |1A' = 30
1 2 3 4 D]
InsertionSort (A, n) {
for 1 = 2 to n {
key = A[i]
j=1i-1;

while (j > 0) and (A[j] > key) {

}

A[j+1] = A[]]

]

=j—1

A[j+1] = key

An Example: Insertion Sort

i=4 j=2 key=40

Alj+1] = 40

\10 30 | 40 | 20
‘ |1A' = 30
1 2 3 4 D]
InsertionSort (A, n) {
for 1 = 2 to n {
> key = A[i]
j=1-1;

while (j > 0) and (A[j] > key) {

}

A[j+1] = A[]]

]

=j—1

A[j+1] = key

An Example: Insertion Sort

i=4 j=2 key=20

Alj+1] = 40

\10 30 | 40 | 20
‘ |1A' = 30
1 2 3 4 D]
InsertionSort (A, n) {
for 1 = 2 to n {
— key = A[i]
j=1-1;

while (j > 0) and (A[j] > key) {

}

A[j+1] = A[]]

]

=j—1

A[j+1] = key

An Example: Insertion Sort

i=4 j=2 key=20

Alj+1] = 40

\10 30 | 40 | 20
‘ |IA' = 30
1 2 3 4 D]
InsertionSort (A, n) {
for 1 = 2 to n {
key = A[i]
> j=41i-1;

while (j > 0) and (A[j] > key) {

}

A[j+1] = A[]]

]

=j—1

A[j+1] = key

An Example: Insertion Sort

i=4 j=3 key=20

A[j+1] =20

\10 30 | 40 | 20
‘ |}\ 1] =40
1 2 3 4 D]
InsertionSort (A, n) {
for 1 = 2 to n {
key = A[i]
— j=41i-1;

while (j > 0) and (A[j] > key) {

}

A[j+1] = A[]]

]

=j—1

A[j+1] = key

An Example: Insertion Sort

\10 30 | 40 | 20
‘ |}\ 1] =40
1 2 3 4 D]
InsertionSort (A, n) {
for 1 = 2 to n {
key = A[i]
j=1-1;
> A[j+1] = A[]]

i=4 j=3 key=20

A[j+1] =20

while (j > 0) and (A[j] > key) {

}

]

=j—1

A[j+1] = key

An Example: Insertion Sort

\10 30 | 40 | 40
‘ |}\ 1] =40
1 2 3 4 D]
InsertionSort (A, n) {
for 1 = 2 to n {
key = A[i]
j=1-1;
— A[j+1] = A[]]

i=4 j=3 key=20

Alj+1] = 40

while (j > 0) and (A[j] > key) {

}

]

=j—1

A[j+1] = key

An Example: Insertion Sort

\10 30 | 40 | 40
‘ |}\ 1] =40
1 2 3 4 D]
InsertionSort (A, n) {
for 1 = 2 to n {
key = A[i]
j=1-1;
— A[j+1] = A[]]

i=4 j=3 key=20

Alj+1] = 40

while (j > 0) and (A[j] > key) {

}

]

=j—1

A[j+1] = key

An Example: Insertion Sort

\10 30 | 40 | 40
‘ |}\ 1] =40
1 2 3 4 D]
InsertionSort (A, n) {
for 1 = 2 to n {
key = A[i]
j=1-1;
A[j+1] = A[]]
> j=3 -1

i=4 j=3 key=20

Alj+1] = 40

while (j > 0) and (A[j] > key) {

}

A[j+1] = key

An Example: Insertion Sort

\10 30 | 40 | 40
‘ |IA' = 30
1 2 3 4 D]
InsertionSort (A, n) {
for 1 = 2 to n {
key = A[i]
j=1-1;
A[j+1] = A[]]
— j=3 -1

i=4 j=2 key=20

Alj+1] = 40

while (j > 0) and (A[j] > key) {

}

A[j+1] = key

An Example: Insertion Sort

\10 30 | 40 | 40
‘ |IA' = 30
1 2 3 4 D]
InsertionSort (A, n) {
for 1 = 2 to n {
key = A[i]
j=1-1;
> A[j+1] = A[]]

i=4 j=2 key=20

Alj+1] = 40

while (j > 0) and (A[j] > key) {

}

]

=j—1

A[j+1] = key

An Example: Insertion Sort

\10 30 | 30 | 40
‘ |A' = 30
1 2 3 4 D]
InsertionSort (A, n) {
for 1 = 2 to n {
key = A[i]
j=1-1;
— A[j+1] = A[]]

i=4 j=2 key=20

Alj+1]1 =30

while (j > 0) and (A[j] > key) {

}

]

=j—1

A[j+1] = key

An Example: Insertion Sort

\10 30 | 30 | 40
‘ |A' = 30
1 2 3 4 D]
InsertionSort (A, n) {
for 1 = 2 to n {
key = A[i]
j=1-1;
A[j+1] = A[]]
> j=3-1

i=4 j=2 key=20

Alj+1]1 =30

while (j > 0) and (A[j] > key) {

}

A[j+1] = key

An Example: Insertion Sort

key =20
Alj+1]1 =30

\10 30 | 30 40‘ |i:4 =1
Al1] =10
1 2 3 4 D]
InsertionSort (A, n) {
for 1 = 2 to n {
key = A[i]
j=1i-1;
while (j > 0) and (A[j] > key) {
A[j+1] = A[]]
— j=3-1

}

A[j+1] = key

An Example: Insertion Sort

key =20
Alj+1]1 =30

_‘10 30 | 30 40|Ti:4 =1
Al[1] =10
1 2 3 4 D]
InsertionSort (A, n) {
for 1 = 2 to n {
key = A[i]
j=1i-1;
while (j > 0) and (A[j] > key) {
A[j+1] = A[]]
j=3-1
}
) A[j+1] = key

An Example: Insertion Sort

key =20
A[j+1]1 =20

_‘10 20 | 30 40|Ti:4 =1
Al[1] =10
1 2 3 4 D]
InsertionSort (A, n) {
for 1 = 2 to n {
key = A[i]
j=1i-1;
while (j > 0) and (A[j] > key) {
A[j+1] = A[]]
j=3-1
}
—> A[j+1] = key

An Example: Insertion Sort

20

30

2

3

40 1=4 j=1
4 A[j] = 10

key =20
A[j+1]1 =20

InsertionSort (A, n) {
for 1 = 2 to n {
key = A[i]
j=1-1;
while (j > 0) and (A[j] > key) {
A[j+1] = A[]]

}
A[j+1]

]

=j—1

= key

Done!

Insertion Sort

Statement Effort
InsertionSort (A, n) {
for 1 = 2 to n { c{n
key = A[i] C,(n-1)
j=1i-1; C;(n-1)
while (j > 0) and (A[j] > key) { c,T
A[3+1] = A[j] c5(T-(n-1))
j=3-1 co(T-(n-1))
} 0
A[j+1] = key c,(n-1)
} 0

T =1t,+1t;+ ... +t, where t, is number of while expression evaluations for the i
for loop iteration

Analyzing Insertion Sort

e T(n) = ¢+ Cy(n-1) + ¢5(n-1) + ¢, T + ¢5(T - (n-1)) + ¢((T - (n-1)) + c4(n-1)
= cgT +con + ¢y
e What can T be?

m Best case -- inner loop body never executed
ot.=1 A T(n) is a linear function
m Worst case -- inner loop body executed for all
previous elements
ot.=1 A T(n) is a quadratic function
m [f T is a quadratic function, which terms in the
above equation matter?

Upper Bound Notation

e We say InsertionSort’s run time is O(n?)

m Properly we should say run time is in O(n?)

m Read O as “Bi1g-O” (you’ll also hear 1t as “order”)
e In general a function

m f(n) 1s O(g(n)) 1f there exist positive constants ¢
and n, such that f(n) < c - g(n) for all n 2 n,,

e Formally

m O(g(n)) = { f(n): 4 positive constants ¢ and n, such
that f{(n) <c - g(n) V n=n,

Big O Fact

e A polynomial of degree k is O(n¥)

e Proof:
= Suppose f(n) =bnk+b,_n*~!'+ ... +bn+b,
oLeta =1b,l

l
n k k
< nkZai—k < nZai < «c¢n
n

Lower Bound Notation

e We say InsertionSort’s run time 1s £2(n)

e In general a function

m f(n) 1s 2(g(n)) 1if 3 positive constants ¢ and n, such
that 0 < c-g(n) <f(n) Vn=n,

Asymptotic Tight Bound

e A function f(n) 1s ®(g(n)) if d positive
constants c;, ¢,, and n, such that

c;gm)<t(n)<c,gn) Vnzn,

Other Asymptotic Notations

e A function f(n) 1s o(g(n)) it 4 positive
constants ¢ and n,, such that
f(n) <cgn) Vnz2n,
e A function f(n) 1s ®(g(n)) if 4 positive
constants ¢ and n, such that
c gn)<t(n) Vnz2n,
e Intuitively,
m 0() 1s like < m () 1s like > m O() 1s like =
m O() 1s like < m Q) 1s like >

Review: Recurrences

e Recurrence: an equation that describes a function in terms of

1ts value on smaller functions

s(n) =+

0 n=>0

c+s(n—1) n>0

(

0 n=>0

s(n) =
n+s(n—1) n>0

T(n) =+

2T(”

C n=1

—j+c n>l1
2

(

C n=1

aT(Ej+cn n>1
| b

T(n)=-

Review: Solving Recurrences

e Substitution method
e Iteration method

e Master method

Review: Substitution Method

e Substitution Method:

m Guess the form of the answer, then use induction
to find the constants and show that solution works

= Example:
o T(n) =2T(n/2) + ®(n) A T(n)=0O(n Ig n)
o T(n) =2T(Q.n/2F +n A 277

Review: Substitution Method

e Substitution Method:

m Guess the form of the answer, then use induction
to find the constants and show that solution works

= Examples:
o T(n) =2T(n/2) + ®(n) A T(n)=0O(n Ig n)
o T(n) =2T@A.n/2F) + n A T(n) = O(n Ig n)
m We can show that this holds by induction

Substitution Method

e Our goal: show that
T(n) =2T(n/2)) + n=O(n 1g n)

e Thus, we need

to show that T(n) <cnlgn

with an appropriate choice of ¢

m Inductive hypothesis: assume
T n2)) < cln2] Ig L n/2]

m Substitute back into recurrence to show that
T(n) < cnlgn follows, when c > 1
(show on board)

Review: lteration Method

e Iteration method:
m Expand the recurrence k times
m Work some algebra to express as a summation

m Evaluate the summation

(0 n=>0

Review: S(”):icﬂ(n—l) o

e s(n) =
c + s(n-1)
Cc + ¢+ s(n-2)
2C + s(n-2)
2C + ¢ + s(n-3)
3¢ + s(n-3)

kc + s(n-k) = ck + s(n-k)

0

Review: sn)= 16 e

e So far for n >= k we have
m s(n) = ck + s(n-k)
e What if k =n?

ms(n)=cn+s(0)=cn

n=>0
n>0

C
Review: |rn) =" 2T(§] '
T —,

n=1

n>1

e T(n)=
2T(n/2) + ¢
22T(/2/2) +¢) + ¢
2°T(n/2?)+ 2c + ¢
22(2T(n/2%/2) + ¢) + 3¢
23T(n/23) + 4¢ + 3¢
23T (n/23) + Tc
23(2T(n/23/2) + ¢) + Tc
24T (n/2%) + 15¢

2KT(n/2%) + (2% - 1)c

C n=1
Review: T(n)=42T(gj+C o1
—_— T2
e So far for n > 2k we have

m T(n) =2XT(n/2%) + (2K - 1)c
e Whatift k =1gn?
m T(n) =2e" T(n/2lem) + (2len - 1)c
=nTm/n)+ (n-1)c
=nT()+ (n-1)c
=nc+ (n-1)c=2n- 1)c

Review: The Master Theorem

e Given: a divide and conquer algorithm

m An algorithm that divides the problem of size n
into a subproblems, each of size n/b

m Let the cost of each stage (i.e., the work to divide
the problem + combine solved subproblems) be
described by the function f(n)

e Then, the Master Theorem gives us a
cookbook for the algorithm’s running time:

Review: The Master Theorem

e if T(n)=aT(n/b)+ f(n) then

@(nlogb a) £(n) = O(nlogb a—e)

. - €>0
T(n) =+ @(n = logn) f(n)= ®(” ?) >c <1
O(f(m) f(m=0f""*)AND

af (n/b) <cf (n) for large n|

Review: Merge Sort

MergeSort (A, left, right) {
if (left < right) {
mid = floor((left + right) / 2);
MergeSort (A, left, mid);
MergeSort (A, mid+1l, right);
Merge (A, left, mid, right);

// Merge () takes two sorted subarrays of A and
// merges them into a single sorted subarray of A.
// Merge ()takes O(n) time, n = length of A

Review: Analysis of Merge Sort

Statement Effort
MergeSort (A, left, right) { T (n)
if (left < right) ({ ®(1)
mid = floor((left + right) / 2); ®(1)
MergeSort (A, left, mid); T(n/2)
MergeSort (A, mid+1l, right); T(n/2)
Merge (A, left, mid, right); ® (n)

}
}
e SoT(n)= () whenn=1, and

2T(n/2) + ®(n) whenn > 1

e Solving this recurrence (how?) gives T(n) =nlgn

Review: Heaps

e A heap 1s a “‘complete” binary tree, usually
represented as an array:

(4] (19
(14 (2 O ©

Review: Heaps

e To represent a heap as an array:
Parent (1) { return.Li/ZJ; }
Left (1) { return 2*i; }
right (1) { return 2*i + 1; }

Review: The Heap Property

e Heaps also satisty the heap property:
A[Parent(i)] = Ali] for all nodes i > 1

m In other words, the value of a node 1s at most the
value of its parent

m The largest value is thus stored at the root (A[1])

e Because the heap 1s a binary tree, the height of
any node 1s at most O(lg n)

Review: Heapify()

e Heapify (): maintain the heap property
m Given: a node i in the heap with children [and r

m Given: two subtrees rooted at [and r, assumed to
be heaps

m Action: let the value of the parent node “float
down” so subtree at i satisfies the heap property

o If A[1] < A[l] or A[1] < A[r], swap A[1] with the largest
of A[l] and A[r]

o Recurse on that subtree

m Running time: O(/), h = height of heap = O(lg n)

Review: BuildHeap()

e BuildHeap () : build heap bottom-up by
running Heapify () on successive subarrays

m Walk backwards through the array from n/2 to 1,
calling Heapify () on each node.

m Order of processing guarantees that the children of
node i are heaps when i 1s processed

e Easy to show that running time 1s O(n 1g n)
e Can be shown to be O(n)

m Key observation: most subheaps are small

Review: Heapsort()

e Heapsort (): an in-place sorting algorithm:

m Maximum element 1s at A[1]

m Discard by swapping with element at A[n]
o Decrement heap_size[A]

o A[n] now contains correct value

m Restore heap property at A[1] by calling
Heapify ()

m Repeat, always swapping A[1] for A[heap_size(A)]
e Running time: O(n 1g n)
m BuildHeap: O(n), Heapify: n * O(lg n)

Review: Priority Queues

e The heap data structure 1s often used for
implementing priority queues

m A data structure for maintaining a set S of
elements, each with an associated value or key

m Supports the operations Insert (),
Maximum (), and ExtractMax ()

s Commonly used for scheduling, event simulation

Priority Queue Operations

e Insert(S, x) inserts the element x into set S

e Maximum(S) returns the element of S with
the maximum key

e ExtractMax(S) removes and returns the
element of S with the maximum key

Implementing Priority Queues

HeapInsert (A, key) // what’s running time?
{

heap size[A] ++;

i1 = heap_size[A];

while (1 > 1 AND AJ[Parent(i)] < key)

{

Ali] A[Parent (i)];
i = Parent (1) ;

}
A[i] = key;

Implementing Priority Queues

HeapMaximum (A)

{
// This one is really tricky:

return A[i];

Implementing Priority Queues

HeapExtractMax (A)
{
if (heap_size[A] < 1) { error; }
max = A[l];
A[l] = Alheap_size[A]]
heap size[A] ——;
Heapify (A, 1);
return max;

Example: Combat Billiards

Extract the next collision C, from the queue
Advance the system to the time T, of the collision

Recompute the next collision(s) for the ball(s)
involved

Insert collision(s) into the queue, using the time of
occurrence as the key

Find the next overall collision C,,, and repeat

Review: Quicksort

e Quicksort pros:
= Sorts in place
m Sorts O(n 1g n) 1n the average case

m Very efficient in practice

e Quicksort cons:
m Sorts O(n?) in the worst case
m Naive implementation: worst-case = sorted

m Even picking a different pivot, some particular
input will take O(n?) time

Review: Quicksort

e Another divide-and-conquer algorithm
m The array A[p..r] 1s partitioned into two non-
empty subarrays A[p..q] and A[g+1..r]

o Invariant: All elements in A[p..q] are less than all
elements in A[q+1..1]

m The subarrays are recursively quicksorted

= No combining step: two subarrays form an
already-sorted array

Review: Quicksort Code

Quicksort (A, p, r)
{
if (p < r)
{
q = Partition(A, p, r),;
Quicksort (A, p, 9);
Quicksort (A, g+l1l, r);

Review: Partition Code

Partition (A, p, r)
x = Alpl;
i=p-1;
j=r + 1;
while (TRUE)
repeat
J——;
until A[]j] <= x;
repeat partition () runsin O(n) time
i++;
until A[i] >= x;
if (1 < j)
Swap (A, i, Jj);
else

return j;

Review: Analyzing Quicksort

o What will be the worst case for the algorithm?

m Partition 1s always unbalanced

o What will be the best case for the algorithm?

m Partition 1s perfectly balanced
o Which is more likely?
m The latter, by far, except...

e Will any particular input elicit the worst case?
m Yes: Already-sorted input

Review: Analyzing Quicksort

e In the worst case:
T(1) =0O(1)
Tn)=T(n-1) + O(n)

e Works out to

T(n) = O(n?)

Review: Analyzing Quicksort

¢ In the best case:
T(n) = 2T(n/2) + O(n)
e Works out to
T(n) = O Ign)

Review: Analyzing Quicksort

e Average case works out to T(n) = ®O(n 1g n)

e Glance over the proof (lecture 6) but you
won’t have to know the details

e Key idea: analyze the running time based on
the expected split caused by Partition()

Review: Improving Quicksort

e The real liability of quicksort 1s that it runs in
O(n?) on already-sorted input

e Book discusses two solutions:
m Randomize the input array, OR

m Pick a random pivot element

e How do these solve the problem?

m By insuring that no particular input can be chosen
to make quicksort run in O(n?) time

Sorting Summary

e Insertion sort:
m Easy to code
m Fast on small inputs (less than ~50 elements)
m Fast on nearly-sorted inputs
m O(n?) worst case
m O(n?) average (equally-likely inputs) case
m O(n?) reverse-sorted case

Sorting Summary

e Merge sort:

= Divide-and-conquer:
o Split array in half
o Recursively sort subarrays

o Linear-time merge step
m O(n lg n) worst case

m Doesn’t sort 1n place

Sorting Summary

e Heap sort:

m Uses the very useful heap data structure
o Complete binary tree

o Heap property: parent key > children’s keys
m O(n lg n) worst case
m Sorts in place

m Fair amount of shuffling memory around

Sorting Summary

e Quick sort:

= Divide-and-conquer:
o Partition array into two subarrays, recursively sort
o All of first subarray < all of second subarray

o No merge step needed!
m O(n Ig n) average case
m Fast in practice

m O(n?) worst case
o Naive implementation: worst case on sorted input

o Address this with randomized quicksort

Review: Comparison Sorts

e Comparison sorts: O(n 1g n) at best
m Model sort with decision tree
m Path down tree = execution trace of algorithm
m Leaves of tree = possible permutations of input

m Tree must have n! leaves, so O(n Ig n) height

Review: Counting Sort

e Counting sort:
m Assumption: input is 1n the range 1..k

m Basic idea:
o Count number of elements k& < each element i

o Use that number to place i in position k of sorted array
m No comparisons! Runs 1n time O(n + k)
m Stable sort

m Does not sort 1n place:
o O(n) array to hold sorted output

o O(k) array for scratch storage

Review: Counting Sort

CountingSort (A, B, k)
for i=1 to k
Cl[i]= O;
for j=1 to n
CIA[]J]] += 1;
for i=2 to k
C[i] = C[i] + C[i-1];
for j=n downto 1
B[C[A[]J]1]] = A[3];
CIA[]j]] -= 1;

W 00 Jd o O & WD R

[
o

Review: Radix Sort

e Radix sort:
m Assumption: input has d digits ranging from O to k£

m Basic idea:
o Sort elements by digit starting with least significant

o Use a stable sort (like counting sort) for each stage

m Each pass over n numbers with d digits takes time
O(n+k), so total time O(dn+dk)
o When d 1s constant and k=0O(n), takes O(n) time

m Fast! Stable! Simple!

m Doesn’t sort 1n place

Review: Binary Search Trees

e Binary Search Trees (BSTs) are an important
data structure for dynamic sets
e In addition to satellite data, elements have:

m key: an 1dentifying field inducing a total ordering

m [eft: pointer to a left child (may be NULL)
m right: pointer to a right child (may be NULL)
m p: pointer to a parent node (NULL for root)

Review: Binary Search Trees

e BST property:
key[left(x)] < key[x] < key[right(x)]

e Example:

Review: Inorder Tree Walk

e An inorder walk prints the set in sorted order:
TreeWalk (x)

TreeWalk (left [x]);
print (x);
TreeWalk (right [x]);
m Easy to show by induction on the BST property
m Preorder tree walk: print root, then left, then right

m Postorder tree walk: print left, then right, then root

Review: BST Search

TreeSearch (x, k)
if (x = NULL or k = key[x])
return x;
if (k < key[x])
return TreeSearch (left[x], k);
else

return TreeSearch(right[x], k);

Review: BST Search (lterative)

IterativeTreeSearch (x, k)

while (x != NULL and k != key[x])
if (k < keyl[x])
x = left[x];
else
X = right([x];

return x;

Review: BST Insert

e Adds an element x to the tree so that the binary
search tree property continues to hold

e The basic algorithm
m Like the search procedure above

m Insert x in place of NULL

m Use a “trailing pointer” to keep track of where you
came from (like inserting into singly linked list)

e Like search, takes time O(h), h = tree height

Review: Sorting With BSTs

e Basic algorithm:

m Insert elements of unsorted array from 1..n

m Do an inorder tree walk to print in sorted order
¢ Running time:

m Best case: Q(n lg n) (1t’s a comparison sort)

m Worst case: O(n?)

m Average case: O(n lg n) (1t’s a quicksort!)

Review: Sorting With BSTs

e Average case analysis for i=1 to n
. TreelInsert (A[i]);
m [t’s a form of quicksort! |InorderTreeWwalk (root);
@z @c 75 & O

\ e
® @ @ @

N
o

Review: More BST Operations

e Minimum:

m Find leftmost node 1n tree

e Successor:

m X has a right subtree: successor 1s minimum node
in right subtree

m X has no right subtree: successor 1s first ancestor of
x whose left child 1s also ancestor of x
o Intuition: As long as you move to the left up the tree,
you’re visiting smaller nodes.

e Predecessor: similar to successor

Review: More BST Operations

e Delete:

m X has no children:

o Remove x

m X has one child:

o Splice out x
Example: delete K

m X has two children: or H or B

o Swap x with successor

o Perform case 1 or 2 to delete it

Review: Red-Black Trees

e Red-black trees:
m Binary search trees augmented with node color

m Operations designed to guarantee that the height
h=0(g n)

Red-Black Properties

e The red-black properties:

1.
2.

5.

Every node is either red or black
Every leaf (NULL pointer) 1s black

o Note: this means every “real” node has 2 children
If a node 1s red, both children are black

o Note: can’t have 2 consecutive reds on a path

Every path from node to descendent leaf contains the
same number of black nodes

The root 1s always black

e black-height: # black nodes on path to leaf

Lets us prove RB tree has height 2 <2 1g(n+1)

Operations On RB Trees

e Since height 1s O(lg n), we can show that all
BST operations take O(lg n) time

e Problem: BST Insert() and Delete() modify the
tree and could destroy red-black properties
e Solution: restructure the tree 1n O(lg n) time

m You should understand the basic approach of these
operations

m Key operation: rotation

RB Trees: Rotation

e Our basic operation for changing tree
structure:

rightRotate (y)

cC A
leftRotate (x)

A B B C

e Rotation preserves inorder key ordering

e Rotation takes O(1) time (Just swaps pointers)

Review: SKip Lists

e A relatively recent data structure

m “‘A probabilistic alternative to balanced trees”

m A randomized algorithm with benefits of r-b trees

o O(lg n) expected search time
o O(1) time for Min, Max, Succ, Pred

m Much easier to code than r-b trees

m Fast!

Review: SKip Lists

e The basic 1dea:
level 3

level 2 < >

level 1 — — — — — —

3 9 12 18 29 35

e Keep a doubly-linked list of elements
= Min, max, successor, predecessor: O(1) time
m Delete 1s O(1) time, Insert 1s O(1)+Search time

e Add each level-i element to level i+1 with
probability p (e.g.,p=1/2orp=1/4)

Review: Skip List Search

e To search for an element with a given key:

m Find location 1n top list
o Top list has O(1) elements with high probability

o Location 1in this list defines a range of items in next list

m Drop down a level and recurse
e O(1) time per level on average
e O(lg n) levels with high probability
e Total time: O(lg n)

Review: Skip List Insert

e Skip list insert: analysis
m Do a search for that key
m Insert element 1n bottom-level list
m With probability p, recurse to insert in next level

m Expected number of lists = 1+ p + p>+ ... = 2?77
= 1/(1-p) = O(1) if p 1s constant
m Total time = Search + O(1) = O(lg n) expected

e Skip list delete: O(1)

Review: SKip Lists

e O(1) expected time for most operations
e O(lg n) expected time for insert

e O(n?) time worst case

m But random, so no particular order of insertion
evokes worst-case behavior

e O(n) expected storage requirements

e Easy to code

Review: Hashing Tables

e Motivation: symbol tables

m A compiler uses a symbol table to relate symbols
to associated data
o Symbols: variable names, procedure names, etc.

o Associated data: memory location, call graph, etc.

m For a symbol table (also called a dictionary), we
care about search, insertion, and deletion

m We typically don’t care about sorted order

Review: Hash Tables

e More formally:

m Given a table 7 and a record x, with key (=
symbol) and satellite data, we need to support:

o Insert (7, x)

o Delete (7, x)

o Search(7, x)

m Don’t care about sorting the records

e Hash tables support all the above 1n
O(1) expected time

Review: Direct Addressing

e Suppose:
m The range of keys 1s 0..m-1

m Keys are distinct

e The 1dea:
m Use key itself as the address into the table

m Set up an array T[0..m-1] in which
oT[i]=x if xe T and key[x] =i
o T[i] = NULL otherwise

m This 1s called a direct-address table

Review: Hash Functions

e Next problem: collision

h(k,)
h(k,)

(actual

keys) h(kz) = h(ks)

~ h(ks)

m-1

Review: Resolving Collisions

e How can we solve the problem of collisions?

e Open addressing

m To insert: 1f slot 1s full, try another slot, and
another, until an open slot 1s found (probing)

m To search, follow same sequence of probes as
would be used when 1nserting the element

o Chaining
m Keep linked list of elements in slots

m Upon collision, just add new element to list

Review: Chaining

e Chaining puts elements that hash to the same
slot in a linked list:

actual .
k3 -
8 ke | —

Review: Analysis Of Hash Tables

e Simple uniform hashing: each key in table 1s
equally likely to be hashed to any slot
e Load factor o= n/m = average # keys per slot

m Average cost of unsuccessful search = O(1+a)
m Successful search: O(1+ o/2) = O(1+ o)

m If n 1s proportional to m, a. = O(1)

e So the cost of searching = O(1) 1f we size our
table appropriately

Review: Choosing A Hash Function

e Choosing the hash function well 1s crucial
m Bad hash function puts all elements in same slot

m A good hash function:
o Should distribute keys uniformly into slots

o Should not depend on patterns in the data
e We discussed three methods:

m Division method
m Multiplication method

m Universal hashing

Review: The Division Method

o (k) =k mod m

m In words: hash k into a table with m slots using the
slot given by the remainder of k divided by m

e Elements with adjacent keys hashed to
different slots: good

e If keys bear relation to m: bad

e Upshot: pick table size m = prime number not
too close to a power of 2 (or 10)

Review: The Multiplication Method

e ForaconstantA, 0 < A < 1:
o h(k) =L m (kA - LkA))]

Fractional part of kA
e Upshot:

m Choose m =2F

m Choose A not too close to O or 1
» Knuth: Good choice for A = (V5 - 1)/2

Review: Universal Hashing

e When attempting to foil an malicious
adversary, randomize the algorithm

e Universal hashing: pick a hash function
randomly when the algorithm begins (nof upon
every insert!)

m Guarantees good performance on average, no
matter what keys adversary chooses

m Need a family of hash functions to choose from

Review: Universal Hashing

e Let ¢be a (finite) collection of hash functions
= ...that map a given universe U of keys...
m ...into therange {0, 1, ..., m - 1}.

o If ¢1s universal 1it:

m for each pair of distinct keys x, y € U,
the number of hash functions h € ¢
for which h(x) = h(y) 1s I¢/m

m In other words:

o With a random hash function from ¢, the chance of a
collision between x and y (x # y) 1s exactly 1/m

Review: A Universal Hash Function

e Choose table size m to be prime

e Decompose key x into r+1 bytes, so that
X=1{Xp X}y oey X,.}
m Only requirement 1s that max value of byte < m

mleta={a, a, ..., a.} denote a sequence of r+1
elements chosen randomly from {0, 1, ..., m - 1}

m Define corresponding hash function 4, € ¢
h(x)= (Z ax, j mod m

_i=0

m With this definition, ¢has m’*! members

Review: Dynamic Order Statistics

e We’ve seen algorithms for finding the ith
element of an unordered set in O(n) time

e OS-Trees: a structure to support finding the ith
element of a dynamic set in O(lg n) time

m Support standard dynamic set operations
(Insert (), Delete(), Min(), Max(),
Succ(), Pred())

m Also support these order statistic operations:
void OS-Select (root, 1i);
int OS—-Rank (x);

Review: Order Statistic Trees

e OS Trees augment red-black trees:

m Associate a size field with each node in the tree

m Xx—>size records the size of subtree rooted at x,
including x itself:

Review: OS-Select

e Example: show OS-Select(root, 5):

OS—-Select (x, i)
{

r

x->left->size + 1;
if (i == r)
return x;
else if (i < r)
return 0OS-Select (x->left, i);

else

return OS-Select (x->right, i-r);

Review: OS-Select

e Example: show OS-Select(root, 5):

OS—-Select (x, i)
{

r

x->left->size + 1;
if (i == r)
return x;
else if (i < r)
return 0OS-Select (x->left, i);

else

return OS-Select (x->right, i-r);

Review: OS-Select

e Example: show OS-Select(root, 5):

OS—-Select (x, i)
{

r

x->left->size + 1;
if (i == r)
return x;
else if (i < r)
return 0OS-Select (x->left, i);

else

return OS-Select (x->right, i-r);

Review: OS-Select

e Example: show OS-Select(root, 5):

OS—-Select (x, i)
{

r

x->left->size + 1;
if (i == r)
return x;
else if (i < r)
return 0OS-Select (x->left, i);

else

return OS-Select (x->right, i-r);

Review: OS-Select

e Example: show OS-Select(root, 5):

OS—-Select (x, i)
{

r

x->left->size + 1;
if (i == r)
return x;
else if (i < r)
return 0OS-Select (x->left, i);

else

return OS-Select (x->right, i-r);

Review: OS-Select

e Example: show OS-Select(root, 5):

OS—-Select (x, i)
{

r

x->left->size + 1;
if (i == r)
return x;
else if (i < r)
return 0OS-Select (x->left, i);

else

return OS-Select (x->right, i-r);

Note: use a sentinel NIL element at the leaves with
size = 0 to simplify code, avoid testing for NULL

Review: Determining The
Rank Of An Element

Idea: rank of right child X is one
more than its parent’s rank, plus
the size of X's left subtree

OS-Rank (T, x)
O o R O
r = x—>left->size + 1;

y=x, LA |

while (y != T->root)

if (y == y->p->right)
r = r + y—>p—>left->size + 1;
Yy = ¥Y=>P;
return r;

Review: Determining The
Rank Of An Element

Example 1:
find rank of element with key H

OS-Rank (T, x)
O o N O

r = x—>left->size + 1;

y=x L&) |
while (y != T->root)
if (y == y->p->right)
r = r + y—>p—>left->size + 1;
Y = Y=>P;
return r;

Review: Determining The
Rank Of An Element

Example 1:
find rank of element with key H

OS-Rank (T, x)
O o N O

r = x—>left->size + 1;

y=x L&) |
while (y != T->root)
if (y == y->p->right)
r = r + y—>p—>left->size + 1;
Y = Y=>P;
return r;

Review: Determining The
Rank Of An Element

Example 1:
find rank of element with key H

OS-Rank (T, x)
O o N O

r = x—>left->size + 1;

y=x L&) |
while (y != T->root)
if (y == y->p->right)
r = r + y—>p—>left->size + 1;
Y = Y=>P;
return r;

Review: Determining The
Rank Of An Element

Example 1:
find rank of element with key H

OS-Rank (T, x)
O o N O

r = x—>left->size + 1;

y=x L&) |
while (y != T->root)
if (y == y->p->right)
r = r + y—>p—>left->size + 1;
Y = Y=>P;
return r;

Review: Maintaining Subtree Sizes

e S0 by keeping subtree sizes, order statistic
operations can be done in O(lg n) time

e Next: maintain sizes during Insert() and
Delete() operations

m Insert(): Increment size fields of nodes traversed
during search down the tree

m Delete(): Decrement sizes along a path from the
deleted node to the root

m Both: Update sizes correctly during rotations

Reivew: Maintaining Subtree Sizes

3 rightRotate (y) @
OWNE O
leftRotate (x)

6 4 4 7

e Note that rotation invalidates only x and y
e Can recalculate their sizes in constant time

e Thm 15.1: can compute any property in O(lg n) time
that depends only on node, left child, and right child

Review: Interval Trees

e The problem: maintain a set of intervals

m E.g., time 1ntervals for a scheduling program:

7 —10

Se * 11 17— 19

4o .8 15— 18 21e—23
m Query: find an interval 1n the set that overlaps a
given query interval
o [14,16] — [15,18]
o [16,19] — [15,18] or [17,19]
o [12,14] - NULL

Interval Trees

e Following the methodology:

m Pick underlying data structure

o Red-black trees will store intervals, keyed on i—low

m Decide what additional information to store

o Store the maximum endpoint in the subtree rooted at i

m Figure out how to maintain the information
o Insert: update max on way down, during rotations

o Delete: sitmilar

m Develop the desired new operations

Searching Interval Trees

IntervalSearch (T, 1)
{
x = T->root;
while (x != NULL && !'overlap(i, x—->interval))
if (x->left '= NULL && x-—>left->max = i->low)
X = x—>left;
else
X = x->right;
return x

}
e Running time: O(lg n)

Review: Correctness of
IntervalSearch()

e Key idea: need to check only 1 of node’s 2
children
m Case 1: search goes right
o Show that 3 overlap in right subtree, or no overlap at all

m Case 2: search goes left

o Show that 3 overlap in left subtree, or no overlap at all

Review: Correctness of
IntervalSearch()

e Case 1: if search goes right, 4 overlap in the right

subtree or no overlap in either subtree
m If dJ overlap in right subtree, we’re done

m Otherwise:
o x—left =NULL, or x — left > max < x — low (Why?)
o Thus, no overlap in left subtree!

while (x != NULL && !overlap(i, x—->interval))
if (x—->left != NULL && x—>left->max =2 i->low)
x = x—>left;
else

X = x—>right;

return x;

Review: Correctness of
IntervalSearch()

e (Case 2: 1f search goes left, 4 overlap 1n the left
subtree or no overlap in either subtree

m If J overlap in left subtree, we’re done

m Otherwise:
o 1 =low < x —left —max, by branch condition
o X —left -»max =y —high for some y in left subtree

o Since i and y don’t overlap and 1 —low <y —high,

1 —»high <y —low
o Since tree is sorted by low’s, 1 —high < any low in right subtree
o Thus, no overlap in right subtree

while (x != NULL && loverlap (i, x->interval))
if (x->left != NULL && x->left->max = i->low)
x = x—->left;
else
x = x—->right;
return x;

