Algorithms

Review for Final

Final Exam

- Coverage: the whole semester
- Goal: doable in 2 hours
- Cheat sheet: you are allowed *two* 8'11" sheets, both sides

Final Exam: Study Tips

- Study tips:
 - Study each lecture
 - Study the homework and homework solutions
 - Study the midterm exams
- Re-make your previous cheat sheets
 - I recommend handwriting or typing them
 - Think about what you should have had on it the first time...cheat sheets is about *identifying* important concepts

Graph Representation

- Adjacency list
- Adjacency matrix
- Tradeoffs:
 - What makes a graph dense?
 - What makes a graph sparse?
 - What about planar graphs?

Basic Graph Algorithms

- Breadth-first search
 - What can we use BFS to calculate?
 - A: shortest-path distance to source vertex
- Depth-first search
 - Tree edges, back edges, cross and forward edges
 - What can we use DFS for?
 - A: finding cycles, topological sort

Topological Sort, MST

- Topological sort
 - Examples: getting dressed, project dependency
 - To what kind of graph does topological sort apply?
- Minimum spanning tree
 - Optimal substructure
 - Min edge theorem (enables greedy approach)

MST Algorithms

- Prim's algorithm
 - What is the bottleneck in Prim's algorithm?
 - A: priority queue operations
- Kruskal's algorithm
 - What is the bottleneck in Kruskal's algorithm?
 - Answer: depends on disjoint-set implementation
 As covered in class, disjoint-set union operations
 As described in book, sorting the edges

Single-Source Shortest Path

- Optimal substructure
- Key idea: relaxation of edges
- What does the Bellman-Ford algorithm do?
 - What is the running time?
- What does Dijkstra's algorithm do?
 - What is the running time?
 - When does Dijkstra's algorithm not apply?

Disjoint-Set Union

- We talked about representing sets as linked lists, every element stores pointer to list head
- What is the cost of merging sets A and B?
 A: O(max(|A|, |B|))
- What is the maximum cost of merging n 1-element sets into a single n-element set?
 A: O(n²)
- *How did we improve this? By how much?*A: always copy smaller into larger: O(n lg n)

Amortized Analysis

- Idea: worst-case cost of an operation may overestimate its cost over course of algorithm
- Goal: get a tighter *amortized bound* on its cost
 - Aggregate method: total cost of operation over course of algorithm divided by # operations

• Example: disjoint-set union

- Accounting method: "charge" a cost to each operation, accumulate unused cost in bank, never go negative
 - Example: dynamically-doubling arrays

Dynamic Programming

- Indications: optimal substructure, repeated subproblems
- What is the difference between memoization and dynamic programming?
- A: same basic idea, but:
 - Memoization: recursive algorithm, looking up subproblem solutions after computing once
 - Dynamic programming: build table of subproblem solutions bottom-up

LCS Via Dynamic Programming

- Longest common subsequence (LCS) problem:
 - Given two sequences x[1..m] and y[1..n], find the longest subsequence which occurs in both
- Brute-force algorithm: 2^m subsequences of x to check against *n* elements of y: O(*n* 2^{*m*})
- Define c[i,j] = length of LCS of x[1..i], y[1..j]

• Theorem:

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max(c[i, j-1], c[i-1, j]) & \text{otherwise} \end{cases}$$

Greedy Algorithms

- Indicators:
 - Optimal substructure
 - Greedy choice property: a locally optimal choice leads to a globally optimal solution
- Example problems:
 - Activity selection: Set of activities, with start and end times. Maximize compatible set of activities.
 - Fractional knapsack: sort items by \$/lb, then take items in sorted order
 - MST

NP-Completeness

- What do we mean when we say a problem is in **P**?
 - A: A solution can be found in polynomial time
- What do we mean when we say a problem is in **NP**?
 - A: A solution can be verified in polynomial time
- What is the relation between **P** and **NP**?
 - A: $\mathbf{P} \subseteq \mathbf{NP}$, but no one knows whether $\mathbf{P} = \mathbf{NP}$

Review: NP-Complete

- What, intuitively, does it mean if we can reduce problem P to problem Q?
 - P is "no harder than" Q
- *How do we reduce P to Q?*
 - Transform instances of P to instances of Q in polynomial time s.t. Q: "yes" iff P: "yes"
- What does it mean if Q is NP-Hard?
 - Every problem $P \in \mathbf{NP} \leq_p Q$
- What does it mean if *Q* is *NP*-Complete?
 - Q is NP-Hard and $Q \in \mathbf{NP}$

Review:

Proving Problems NP-Complete

- What was the first problem shown to be NP-Complete?
- A: Boolean satisfiability (*SAT*), by Cook
- *How do we usually prove that a problem R is NP-Complete?*
- A: Show R ∈ NP, and reduce a known NP-Complete problem Q to R

Review: Reductions

- Review the reductions we've covered:
 - Directed hamiltonian cycle → undirected hamiltonian cycle
 - Undirected hamiltonian cycle → traveling salesman problem
 - 3-CNF → *k*-clique
 - *k*-clique \rightarrow vertex cover
 - Homework 7

Next: Detailed Review

- Up next: a detailed review of the first half of the course
 - The following 100+ slides are intended as a resource for your studying
 - Since you probably remember the more recent stuff better, I just provide this for the early material

Review: Induction

• Suppose

S(k) is true for fixed constant k
 Often k = 0

- $S(n) \land S(n+1)$ for all $n \ge k$
- Then S(n) is true for all $n \ge k$

Proof By Induction

- Claim:S(n) is true for all n >= k
- Basis:
 - Show formula is true when n = k
- Inductive hypothesis:
 - Assume formula is true for an arbitrary n
- Step:
 - Show that formula is then true for n+1

Induction Example: Gaussian Closed Form

• Prove 1 + 2 + 3 + ... + n = n(n+1) / 2

Basis:

• If n = 0, then 0 = 0(0+1) / 2

Inductive hypothesis:

• Assume 1 + 2 + 3 + ... + n = n(n+1) / 2

■ Step (show true for n+1):

 $1 + 2 + \dots + n + n + 1 = (1 + 2 + \dots + n) + (n+1)$ = n(n+1)/2 + n+1 = [n(n+1) + 2(n+2)]/2 = (n+1)(n+2)/2 = (n+1)(n+1 + 1) / 2 Induction Example: Geometric Closed Form

- Prove a⁰ + a¹ + ... + aⁿ = (aⁿ⁺¹ 1)/(a 1) for all a != 1
 - Basis: show that $a^0 = (a^{0+1} 1)/(a 1)$ $a^0 = 1 = (a^1 - 1)/(a - 1)$

Inductive hypothesis:

• Assume $a^0 + a^1 + \ldots + a^n = (a^{n+1} - 1)/(a - 1)$

• Step (show true for n+1):

$$a^{0} + a^{1} + \dots + a^{n+1} = a^{0} + a^{1} + \dots + a^{n} + a^{n+1}$$

 $= (a^{n+1} - 1)/(a - 1) + a^{n+1} = (a^{n+1+1} - 1)(a - 1)$

Review: Analyzing Algorithms

- We are interested in *asymptotic analysis*:
 - Behavior of algorithms as problem size gets large
 - Constants, low-order terms don't matter

30
 10
 40
 20

$$i = 2$$
 $j = 1$
 $key = 10$

 1
 2
 3
 4
 $A[j] = 30$
 $A[j+1] = 10$

30
 30
 40
 20

$$i = 2$$
 $j = 1$
 $key = 10$

 1
 2
 3
 4
 $A[j] = 30$
 $A[j+1] = 30$

30
 30
 40
 20

$$i = 2$$
 $j = 1$
 $key = 10$

 1
 2
 3
 4
 $A[j] = 30$
 $A[j+1] = 30$

30
 30
 40
 20

$$i = 2$$
 $j = 0$
 $key = 10$

 1
 2
 3
 4
 $A[j] = \emptyset$
 $A[j+1] = 30$

30
 30
 40
 20

$$i = 2$$
 $j = 0$
 $key = 10$

 1
 2
 3
 4
 $A[j] = \emptyset$
 $A[j+1] = 30$

10
 30
 40
 20

$$i = 2$$
 $j = 0$
 $key = 10$

 1
 2
 3
 4
 $A[j] = \emptyset$
 $A[j+1] = 10$

10
 30
 40
 20

$$i = 3$$
 $j = 0$
 key = 10

 1
 2
 3
 4
 $A[j] = \emptyset$
 $A[j+1] = 10$

}

10 30 40 20
$$i = 3$$
 $j = 0$ key = 40
A[j] = \emptyset A[j+1] = 10

10 30 40 20
$$i = 3$$
 $j = 2$ key = 40
A[j] = 30 A[j+1] = 40

10 30 40 20
$$i = 3$$
 $j = 2$ key = 40
A[j] = 30 A[j+1] = 40

10 30 40 20
$$i = 3$$
 $j = 2$ key = 40
A[j] = 30 A[j+1] = 40
10 30 40 20
1 2 3 4
InsertionSort(A, n) {
for
$$i = 2$$
 to n {
key = A[i]
j = i - 1;
while (j > 0) and (A[j] > key) {
A[j+1] = A[j]
j = j - 1

A[j+1] = key

}

}

}

10 30 40 20
$$i = 4$$
 $j = 2$ $key = 20$
A[j] = 30 A[j+1] = 40

10 30 40 20
$$i = 4$$
 $j = 3$ key = 20 $A[j] = 40$ $A[j+1] = 20$

10 30 40 20
$$i = 4$$
 $j = 3$ key = 20 $A[j] = 40$ $A[j+1] = 20$

10 30 40 40
$$i = 4$$
 $j = 3$ key = 20
A[j] = 40 A[j+1] = 40

10 30 40 40
$$i = 4$$
 $j = 3$ key = 20
A[j] = 40 A[j+1] = 40

10 30 40 40
$$i = 4$$
 $j = 3$ key = 20
A[j] = 40 A[j+1] = 40

10 30 40 40
$$i = 4$$
 $j = 2$ key = 20
A[j] = 30 A[j+1] = 40

10 30 40 40
$$i = 4$$
 $j = 2$ key = 20
A[j] = 30 A[j+1] = 40

10 30 30 40
$$i = 4$$
 $j = 2$ key = 20
A[j] = 30 A[j+1] = 30

10 30 30 40
$$i = 4$$
 $j = 2$ key = 20
A[j] = 30 A[j+1] = 30

10
 30
 30
 40

$$i = 4$$
 $j = 1$
 $key = 20$

 1
 2
 3
 4

10
 30
 30
 40

$$i = 4$$
 $j = 1$
 $key = 20$

 1
 2
 3
 4

10
 20
 30
 40

$$i = 4$$
 $j = 1$
 $key = 20$

 1
 2
 3
 4
 $A[j] = 10$
 $A[j+1] = 20$

10
 20
 30
 40

$$i = 4$$
 $j = 1$
 $key = 20$

 1
 2
 3
 4
 $A[j] = 10$
 $A[j+1] = 20$

```
InsertionSort(A, n) {
  for i = 2 to n {
    key = A[i]
    j = i - 1;
    while (j > 0) and (A[j] > key) {
        A[j+1] = A[j]
        j = j - 1
        }
        A[j+1] = key
    }
}    Done!
```

Insertion Sort

Statement	Effort
InsertionSort(A, n) {	
for $i = 2$ to n {	c ₁ n
key = A[i]	$c_2(n-1)$
j = i - 1;	$c_3(n-1)$
while (j > 0) and (A[j] > key) {	c ₄ T
A[j+1] = A[j]	$c_5(T-(n-1))$
j = j - 1	$c_6(T-(n-1))$
}	0
A[j+1] = key	$c_7(n-1)$
}	0
}	
T - t , t , ,	lught and foundly the

 $T = t_2 + t_3 + ... + t_n$ where t_i is number of while expression evaluations for the ith for loop iteration

Analyzing Insertion Sort

- $T(n) = c_1 n + c_2(n-1) + c_3(n-1) + c_4 T + c_5(T (n-1)) + c_6(T (n-1)) + c_7(n-1)$ = $c_8 T + c_9 n + c_{10}$
- What can T be?
 - Best case -- inner loop body never executed
 t_i = 1 ▲ T(n) is a linear function
 - Worst case -- inner loop body executed for all previous elements

• $t_i = i \wedge T(n)$ is a quadratic function

■ If T is a quadratic function, which terms in the above equation matter?

Upper Bound Notation

- We say InsertionSort's run time is $O(n^2)$
 - Properly we should say run time is *in* O(n²)
 - Read O as "Big-O" (you'll also hear it as "order")
- In general a function
 - f(n) is O(g(n)) if there exist positive constants cand n_0 such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$
- Formally
 - $O(g(n)) = \{ f(n): \exists positive constants c and n_0 such that f(n) \le c \cdot g(n) \forall n \ge n_0 \}$

Big O Fact

- A polynomial of degree k is O(n^k)
- Proof:
 - Suppose $f(n) = b_k n^k + b_{k-1} n^{k-1} + ... + b_1 n + b_0$ • Let $a_i = |b_i|$
 - $f(n) \le a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_0$

$$\leq n^k \sum a_i \frac{n^i}{n^k} \leq n^k \sum a_i \leq cn^k$$

Lower Bound Notation

- We say InsertionSort's run time is $\Omega(n)$
- In general a function
 - f(n) is $\Omega(g(n))$ if \exists positive constants c and n_0 such that $0 \le c \cdot g(n) \le f(n) \quad \forall n \ge n_0$

Asymptotic Tight Bound

• A function f(n) is $\Theta(g(n))$ if \exists positive constants c_1, c_2 , and n_0 such that

 $c_1 g(n) \le f(n) \le c_2 g(n) \forall n \ge n_0$

Other Asymptotic Notations

- A function f(n) is o(g(n)) if \exists positive constants *c* and n_0 such that $f(n) < c g(n) \forall n \ge n_0$
- A function f(n) is $\omega(g(n))$ if \exists positive constants c and n_0 such that $c g(n) < f(n) \forall n \ge n_0$
- Intuitively,
 - o() is like < () is like >
- Θ () is like =
- O() is like \leq $\Omega()$ is like \geq

Review: Recurrences

• Recurrence: an equation that describes a function in terms of its value on smaller functions

$$s(n) = \begin{cases} 0 & n = 0 \\ c + s(n-1) & n > 0 \end{cases}$$

$$s(n) = \begin{cases} 0 & n = 0\\ n + s(n-1) & n > 0 \end{cases}$$

$$T(n) = \begin{cases} c & n = 1 \\ 2T\left(\frac{n}{2}\right) + c & n > 1 \end{cases}$$

$$T(n) = \begin{cases} c & n = 1 \\ aT\left(\frac{n}{b}\right) + cn & n > 1 \end{cases}$$

Review: Solving Recurrences

- Substitution method
- Iteration method
- Master method

Review: Substitution Method

- Substitution Method:
 - Guess the form of the answer, then use induction to find the constants and show that solution works
 - Example:

• $T(n) = 2T(n/2) + \Theta(n)$ • $T(n) = \Theta(n \lg n)$ • $T(n) = 2T(\aleph n/2 \mathscr{G} + n \wedge ???)$

Review: Substitution Method

- Substitution Method:
 - Guess the form of the answer, then use induction to find the constants and show that solution works
 - Examples:
 - $\circ T(n) = 2T(n/2) + \Theta(n) \land T(n) = \Theta(n \lg n)$
 - $\circ T(n) = 2T((n/2S) + n \wedge T(n) = \Theta(n \lg n))$
 - We can show that this holds by induction

Substitution Method

• Our goal: show that

 $T(n) = 2T(\lfloor n/2 \rfloor) + n = O(n \lg n)$

- Thus, we need to show that $T(n) \le c n \lg n$ with an appropriate choice of c
 - Inductive hypothesis: assume $T(\lfloor n/2 \rfloor) \le c \lfloor n/2 \rfloor \lg \lfloor n/2 \rfloor$
 - Substitute back into recurrence to show that $T(n) \le c \ n \ \lg n$ follows, when $c \ge 1$ (show on board)

Review: Iteration Method

- Iteration method:
 - Expand the recurrence *k* times
 - Work some algebra to express as a summation
 - Evaluate the summation

Review:
$$s(n) = \begin{cases} 0 & n = 0 \\ c + s(n-1) & n > 0 \end{cases}$$

- s(n) = c + s(n-1)
 - c + c + s(n-2)
 - 2c + s(n-2)
 - 2c + c + s(n-3)
 - 3c + s(n-3)

. . .

kc + s(n-k) = ck + s(n-k)

Review:
$$s(n) = \begin{cases} 0 & n = 0 \\ c + s(n-1) & n > 0 \end{cases}$$

- So far for n >= k we have
 - $\bullet s(n) = ck + s(n-k)$
- What if k = n?
 - s(n) = cn + s(0) = cn

Review:
$$T(n) = \begin{cases} c & n = 1 \\ 2T\left(\frac{n}{2}\right) + c & n > 1 \end{cases}$$

• T(n) =

. . .

2T(n/2) + c 2(2T(n/2/2) + c) + c $2^{2}T(n/2^{2}) + 2c + c$ $2^{2}(2T(n/2^{2}/2) + c) + 3c$ $2^{3}T(n/2^{3}) + 4c + 3c$ $2^{3}T(n/2^{3}) + 7c$ $2^{3}(2T(n/2^{3}/2) + c) + 7c$ $2^{4}T(n/2^{4}) + 15c$

 $2^{k}T(n/2^{k}) + (2^{k} - 1)c$

Review:
$$T(n) = \begin{cases} c & n = 1\\ 2T\left(\frac{n}{2}\right) + c & n > 1 \end{cases}$$

So far for n > 2k we have
T(n) = 2^kT(n/2^k) + (2^k - 1)c
What if k = lg n?
T(n) = 2^{lg n} T(n/2^{lg n}) + (2^{lg n} - 1)c
n T(n/n) + (n - 1)c
n T(1) + (n-1)c
n c + (n-1)c = (2n - 1)c

Review: The Master Theorem

- Given: a *divide and conquer* algorithm
 - An algorithm that divides the problem of size n into a subproblems, each of size n/b
 - Let the cost of each stage (i.e., the work to divide the problem + combine solved subproblems) be described by the function f(n)
- Then, the Master Theorem gives us a cookbook for the algorithm's running time:

Review: The Master Theorem

• if T(n) = aT(n/b) + f(n) then

$$T(n) = \begin{cases} \Theta(n^{\log_{b} a}) & f(n) = O(n^{\log_{b} a - \varepsilon}) \\ \Theta(n^{\log_{b} a} \log n) & f(n) = \Theta(n^{\log_{b} a}) \\ \Theta(f(n)) & f(n) = \Omega(n^{\log_{b} a + \varepsilon}) \text{AND} \\ af(n/b) < cf(n) & \text{for large } n \end{cases} \begin{cases} \varepsilon > 0 \\ c < 1 \end{cases}$$

Review: Merge Sort

```
MergeSort(A, left, right) {
    if (left < right) {
        mid = floor((left + right) / 2);
        MergeSort(A, left, mid);
        MergeSort(A, mid+1, right);
        Merge(A, left, mid, right);
    }
}</pre>
```

// Merge() takes two sorted subarrays of A and
// merges them into a single sorted subarray of A.
// Merge()takes O(n) time, n = length of A
Review: Analysis of Merge Sort

Statement	Effort
<pre>MergeSort(A, left, right) { if (left < wight) { </pre>	T(n)
<pre>mid = floor((left + right) / 2);</pre>	$\Theta(1)$ $\Theta(1)$
MergeSort(A, left, mid);	T(n/2)
<pre>MergeSort(A, mid+1, right);</pre>	T(n/2)
Merge(A, left, mid, right); }	Θ(n)
• So $T(n) = \Theta(1)$ when $n = 1$, and	
$2T(n/2) + \Theta(n)$ when $n > 1$	

• Solving this recurrence (*how?*) gives $T(n) = n \lg n$

Review: Heaps

• A *heap* is a "complete" binary tree, usually represented as an array:

Review: Heaps

To represent a heap as an array:
Parent(i) { return [i/2]; }
Left(i) { return 2*i; }
right(i) { return 2*i + 1; }

Review: The Heap Property

- Heaps also satisfy the *heap property*:
 - $A[Parent(i)] \ge A[i]$ for all nodes i > 1
 - In other words, the value of a node is at most the value of its parent
 - The largest value is thus stored at the root (A[1])
- Because the heap is a binary tree, the height of any node is at most Θ(lg n)

Review: Heapify()

- **Heapify()**: maintain the heap property
 - Given: a node i in the heap with children l and r
 - Given: two subtrees rooted at *l* and *r*, assumed to be heaps
 - Action: let the value of the parent node "float down" so subtree at *i* satisfies the heap property
 - If A[i] < A[1] or A[i] < A[r], swap A[i] with the largest of A[1] and A[r]

• Recurse on that subtree

Running time: O(h), h = height of heap = O(lg n)

Review: BuildHeap()

- BuildHeap(): build heap bottom-up by running Heapify() on successive subarrays
 - Walk backwards through the array from n/2 to 1, calling Heapify() on each node.
 - Order of processing guarantees that the children of node *i* are heaps when *i* is processed
- Easy to show that running time is $O(n \lg n)$
- Can be shown to be O(*n*)
 - Key observation: most subheaps are small

Review: Heapsort()

- **Heapsort ()**: an in-place sorting algorithm:
 - Maximum element is at A[1]
 - Discard by swapping with element at A[n]
 - Decrement heap_size[A]
 - A[n] now contains correct value
 - Restore heap property at A[1] by calling
 Heapify()
 - Repeat, always swapping A[1] for A[heap_size(A)]
- Running time: O(*n* lg *n*)
 - **BuildHeap:** O(n), **Heapify:** $n * O(\lg n)$

Review: Priority Queues

- The heap data structure is often used for implementing *priority queues*
 - A data structure for maintaining a set *S* of elements, each with an associated value or *key*
 - Supports the operations Insert(),
 Maximum(), and ExtractMax()
 - Commonly used for scheduling, *event simulation*

Priority Queue Operations

- Insert(S, x) inserts the element x into set S
- Maximum(S) returns the element of S with the maximum key
- ExtractMax(S) removes and returns the element of S with the maximum key

Implementing Priority Queues

```
HeapInsert(A, key) // what's running time?
{
    heap_size[A] ++;
    i = heap_size[A];
    while (i > 1 AND A[Parent(i)] < key)
    {
        A[i] = A[Parent(i)];
        i = Parent(i);
    }
    A[i] = key;
}
```

Implementing Priority Queues

```
HeapMaximum(A)
{
    // This one is really tricky:
    return A[i];
}
```

Implementing Priority Queues

```
HeapExtractMax(A)
{
    if (heap_size[A] < 1) { error; }
    max = A[1];
    A[1] = A[heap_size[A]]
    heap_size[A] --;
    Heapify(A, 1);
    return max;
}</pre>
```

Example: Combat Billiards

- Extract the next collision C_i from the queue
- Advance the system to the time T_i of the collision
- Recompute the next collision(s) for the ball(s) involved
- Insert collision(s) into the queue, using the time of occurrence as the key
- Find the next overall collision C_{i+1} and repeat

Review: Quicksort

- Quicksort pros:
 - Sorts in place
 - Sorts O(n lg n) in the average case
 - Very efficient in practice
- Quicksort cons:
 - Sorts $O(n^2)$ in the worst case
 - Naïve implementation: worst-case = sorted
 - Even picking a different pivot, some particular input will take O(n²) time

Review: Quicksort

- Another divide-and-conquer algorithm
 - The array A[p..r] is *partitioned* into two nonempty subarrays A[p..q] and A[q+1..r]
 - Invariant: All elements in A[p..q] are less than all elements in A[q+1..r]
 - The subarrays are recursively quicksorted
 - No combining step: two subarrays form an already-sorted array

Review: Quicksort Code

```
Quicksort (A, p, r)
{
    if (p < r)
    {
        q = Partition(A, p, r);
        Quicksort(A, p, q);
        Quicksort(A, q+1, r);
    }
```

Review: Partition Code

```
Partition(A, p, r)
    x = A[p];
    i = p - 1;
    j = r + 1;
    while (TRUE)
        repeat
             j--;
        until A[j] <= x;</pre>
        repeat
             i++;
        until A[i] >= x;
        if (i < j)
             Swap(A, i, j);
        else
             return j;
```

partition() runs in O(n) time

- What will be the worst case for the algorithm?
 Partition is always unbalanced
- What will be the best case for the algorithm?
 - Partition is perfectly balanced
- Which is more likely?
 - The latter, by far, except...
- Will any particular input elicit the worst case?
 - Yes: Already-sorted input

- In the worst case: $T(1) = \Theta(1)$ $T(n) = T(n - 1) + \Theta(n)$
- Works out to
 - $T(n) = \Theta(n^2)$

• In the best case:

 $T(n) = 2T(n/2) + \Theta(n)$

• Works out to

 $T(n) = \Theta(n \lg n)$

- Average case works out to $T(n) = \Theta(n \lg n)$
- Glance over the proof (lecture 6) but you won't have to know the details
- Key idea: analyze the running time based on the expected split caused by Partition()

Review: Improving Quicksort

- The real liability of quicksort is that it runs in O(n²) on already-sorted input
- Book discusses two solutions:
 - Randomize the input array, OR
 - Pick a random pivot element
- *How do these solve the problem?*
 - By insuring that no particular input can be chosen to make quicksort run in O(n²) time

- Insertion sort:
 - Easy to code
 - Fast on small inputs (less than ~50 elements)
 - Fast on nearly-sorted inputs
 - O(n²) worst case
 - O(n²) average (equally-likely inputs) case
 - $O(n^2)$ reverse-sorted case

- Merge sort:
 - Divide-and-conquer:
 - Split array in half
 - Recursively sort subarrays
 - Linear-time merge step
 - O(n lg n) worst case
 - Doesn't sort in place

- Heap sort:
 - Uses the very useful heap data structure
 - Complete binary tree
 - Heap property: parent key > children's keys
 - O(n lg n) worst case
 - Sorts in place
 - Fair amount of shuffling memory around

- Quick sort:
 - Divide-and-conquer:
 - Partition array into two subarrays, recursively sort
 - All of first subarray < all of second subarray
 - No merge step needed!
 - O(n lg n) average case
 - Fast in practice
 - $O(n^2)$ worst case
 - Naïve implementation: worst case on sorted input
 - Address this with randomized quicksort

Review: Comparison Sorts

- Comparison sorts: O(n lg n) at best
 - Model sort with decision tree
 - Path down tree = execution trace of algorithm
 - Leaves of tree = possible permutations of input
 - Tree must have n! leaves, so O(n lg n) height

Review: Counting Sort

- Counting sort:
 - Assumption: input is in the range 1..k
 - Basic idea:
 - Count number of elements $k \leq$ each element *i*
 - Use that number to place *i* in position *k* of sorted array
 - No comparisons! Runs in time O(n + k)
 - Stable sort
 - Does not sort in place:
 - O(n) array to hold sorted output
 - O(k) array for scratch storage

Review: Counting Sort

1	CountingSort(A, B, k)
2	for i=1 to k
3	C[i] = 0;
4	for j=1 to n
5	C[A[j]] += 1;
6	for i=2 to k
7	C[i] = C[i] + C[i-1];
8	for j=n downto 1
9	B[C[A[j]]] = A[j];
10	C[A[j]] -= 1;

Review: Radix Sort

- Radix sort:
 - Assumption: input has d digits ranging from 0 to k
 - Basic idea:
 - Sort elements by digit starting with *least* significant
 - Use a stable sort (like counting sort) for each stage
 - Each pass over *n* numbers with *d* digits takes time O(n+k), so total time O(dn+dk)
 - When *d* is constant and k=O(n), takes O(n) time
 - Fast! Stable! Simple!
 - Doesn't sort in place

Review: Binary Search Trees

- *Binary Search Trees* (BSTs) are an important data structure for dynamic sets
- In addition to satellite data, elements have:
 - *key*: an identifying field inducing a total ordering
 - left: pointer to a left child (may be NULL)
 - *right*: pointer to a right child (may be NULL)
 - *p*: pointer to a parent node (NULL for root)

Review: Binary Search Trees

- BST property: key[left(x)] ≤ key[x] ≤ key[right(x)]
- Example:

Review: Inorder Tree Walk

- An *inorder walk* prints the set in sorted order: TreeWalk(x) TreeWalk(left[x]); print(x); TreeWalk(right[x]);
 - Easy to show by induction on the BST property
 - *Preorder tree walk*: print root, then left, then right
 - *Postorder tree walk*: print left, then right, then root

Review: BST Search

```
TreeSearch(x, k)
```

if (x = NULL or k = key[x])

return x;

if (k < key[x])

return TreeSearch(left[x], k);
else

return TreeSearch(right[x], k);

Review: BST Search (Iterative)

```
IterativeTreeSearch(x, k)
while (x != NULL and k != key[x])
if (k < key[x])
x = left[x];
else
x = right[x];
return x;</pre>
```

Review: BST Insert

- Adds an element x to the tree so that the binary search tree property continues to hold
- The basic algorithm
 - Like the search procedure above
 - Insert x in place of NULL
 - Use a "trailing pointer" to keep track of where you came from (like inserting into singly linked list)
- Like search, takes time O(h), h = tree height
Review: Sorting With BSTs

- Basic algorithm:
 - Insert elements of unsorted array from 1..n
 - Do an inorder tree walk to print in sorted order
- Running time:
 - Best case: $\Omega(n \lg n)$ (it's a comparison sort)
 - Worst case: O(n²)
 - Average case: $O(n \lg n)$ (it's a quicksort!)

Review: Sorting With BSTs

Average case analysis
It's a form of quicksort!

for i=1 to n
 TreeInsert(A[i]);
InorderTreeWalk(root);

Review: More BST Operations

- Minimum:
 - Find leftmost node in tree
- Successor:
 - x has a right subtree: successor is minimum node in right subtree
 - x has no right subtree: successor is first ancestor of x whose left child is also ancestor of x
 - Intuition: As long as you move to the left up the tree, you're visiting smaller nodes.
- Predecessor: similar to successor

Review: More BST Operations

- Delete:
 x has no children:

 Remove x
 x has one child:
 Splice out x

 x has two children:
 C Example: delete K or H or B
 - Swap x with successor
 - Perform case 1 or 2 to delete it

Review: Red-Black Trees

- *Red-black trees*:
 - Binary search trees augmented with node color
 - Operations designed to guarantee that the height $h = O(\lg n)$

Red-Black Properties

- The *red-black properties*:
 - 1. Every node is either red or black
 - 2. Every leaf (NULL pointer) is black
 - Note: this means every "real" node has 2 children
 - 3. If a node is red, both children are black
 o Note: can't have 2 consecutive reds on a path
 - 4. Every path from node to descendent leaf contains the same number of black nodes
 - 5. The root is always black
- *black-height:* # black nodes on path to leaf
 - Lets us prove RB tree has height $h \le 2 \lg(n+1)$

Operations On RB Trees

- Since height is O(lg *n*), we can show that all BST operations take O(lg *n*) time
- Problem: BST Insert() and Delete() modify the tree and could destroy red-black properties
- Solution: restructure the tree in O(lg *n*) time
 - You should understand the basic approach of these operations
 - Key operation: *rotation*

RB Trees: Rotation

• Our basic operation for changing tree structure:

- Rotation preserves inorder key ordering
- Rotation takes O(1) time (just swaps pointers)

Review: Skip Lists

- A relatively recent data structure
 - <u>"A probabilistic alternative to balanced trees"</u>
 - A randomized algorithm with benefits of r-b trees
 - \circ O(lg *n*) expected search time
 - O(1) time for Min, Max, Succ, Pred
 - *Much* easier to code than r-b trees
 - Fast!

Review: Skip Lists

• The basic idea:

- Keep a doubly-linked list of elements
 - Min, max, successor, predecessor: O(1) time
 - Delete is O(1) time, Insert is O(1)+Search time
- Add each level-*i* element to level *i*+1 with probability p (e.g., p = 1/2 or p = 1/4)

Review: Skip List Search

- To search for an element with a given key:
 - Find location in top list
 - \circ Top list has O(1) elements with high probability
 - Location in this list defines a range of items in next list
 - Drop down a level and recurse
- O(1) time per level on average
- O(lg *n*) levels with high probability
- Total time: O(lg *n*)

Review: Skip List Insert

- Skip list insert: analysis
 - Do a search for that key
 - Insert element in bottom-level list
 - With probability p, recurse to insert in next level
 - Expected number of lists = $1 + p + p^2 + ... = ???$

= 1/(1-p) = O(1) if p is constant

- Total time = Search + $O(1) = O(\lg n)$ expected
- Skip list delete: O(1)

Review: Skip Lists

- O(1) expected time for most operations
- O(lg *n*) expected time for insert
- $O(n^2)$ time worst case
 - But random, so no particular order of insertion evokes worst-case behavior
- O(n) expected storage requirements
- Easy to code

Review: Hashing Tables

- Motivation: symbol tables
 - A compiler uses a *symbol table* to relate symbols to associated data
 - Symbols: variable names, procedure names, etc.
 - Associated data: memory location, call graph, etc.
 - For a symbol table (also called a *dictionary*), we care about search, insertion, and deletion
 - We typically don't care about sorted order

Review: Hash Tables

- More formally:
 - Given a table *T* and a record *x*, with key (= symbol) and satellite data, we need to support:
 - Insert (T, x)
 - Delete (T, x)
 - \circ Search(*T*, *x*)
 - Don't care about sorting the records
- *Hash tables* support all the above in O(1) expected time

Review: Direct Addressing

- Suppose:
 - The range of keys is 0..*m*-1
 - Keys are distinct
- The idea:
 - Use key itself as the address into the table
 - Set up an array T[0..m-1] in which
 - T[i] = x if $x \in T$ and key[x] = i
 - \circ T[*i*] = NULL otherwise
 - This is called a *direct-address table*

Review: Hash Functions

• Next problem: *collision*

Review: Resolving Collisions

- *How can we solve the problem of collisions?*
- Open addressing
 - To insert: if slot is full, try another slot, and another, until an open slot is found (*probing*)
 - To search, follow same sequence of probes as would be used when inserting the element
- Chaining
 - Keep linked list of elements in slots
 - Upon collision, just add new element to list

Review: Chaining

• Chaining puts elements that hash to the same slot in a linked list:

Review: Analysis Of Hash Tables

- *Simple uniform hashing*: each key in table is equally likely to be hashed to any slot
- *Load factor* $\alpha = n/m =$ average # keys per slot
 - Average cost of unsuccessful search = $O(1+\alpha)$
 - Successful search: $O(1 + \alpha/2) = O(1 + \alpha)$
 - If *n* is proportional to *m*, $\alpha = O(1)$
- So the cost of searching = O(1) if we size our table appropriately

Review: Choosing A Hash Function

- Choosing the hash function well is crucial
 - Bad hash function puts all elements in same slot
 - A good hash function:
 - Should distribute keys uniformly into slots
 - Should not depend on patterns in the data
- We discussed three methods:
 - Division method
 - Multiplication method
 - Universal hashing

Review: The Division Method

- $h(k) = k \mod m$
 - In words: hash k into a table with m slots using the slot given by the remainder of k divided by m
- Elements with adjacent keys hashed to different slots: good
- If keys bear relation to *m*: bad
- Upshot: pick table size *m* = prime number not too close to a power of 2 (or 10)

Review: The Multiplication Method

- For a constant A, 0 < A < 1:
- $h(k) = \lfloor m (kA \lfloor kA \rfloor) \rfloor$ Fractional part of kA
- Upshot:
 - Choose $m = 2^P$
 - Choose A not too close to 0 or 1
 - Knuth: Good choice for $A = (\sqrt{5} 1)/2$

Review: Universal Hashing

- When attempting to foil an malicious adversary, randomize the algorithm
- *Universal hashing*: pick a hash function randomly when the algorithm begins (*not* upon every insert!)
 - Guarantees good performance on average, no matter what keys adversary chooses
 - Need a family of hash functions to choose from

Review: Universal Hashing

- Let ς be a (finite) collection of hash functions
 - ... that map a given universe U of keys...
 - ... into the range $\{0, 1, ..., m 1\}$.
- If *ς* is *universal* if:
 - for each pair of distinct keys $x, y \in U$, the number of hash functions $h \in \zeta$ for which h(x) = h(y) is $|\zeta|/m$
 - In other words:
 - With a random hash function from ζ , the chance of a collision between *x* and *y* ($x \neq y$) is exactly 1/*m*

Review: A Universal Hash Function

- Choose table size *m* to be prime
- Decompose key x into r+1 bytes, so that $x = \{x_0, x_1, ..., x_r\}$
 - Only requirement is that max value of byte < m
 - Let $a = \{a_0, a_1, ..., a_r\}$ denote a sequence of r+1 elements chosen randomly from $\{0, 1, ..., m-1\}$
 - Define corresponding hash function $h_a \in \mathcal{G}$.

$$h_a(x) = \left(\sum_{i=0}^r a_i x_i\right) \mod m$$

• With this definition, ς has m^{r+1} members

Review: Dynamic Order Statistics

- We've seen algorithms for finding the *i*th element of an unordered set in O(*n*) time
- *OS-Trees*: a structure to support finding the *i*th element of a dynamic set in O(lg *n*) time
 - Support standard dynamic set operations
 (Insert(), Delete(), Min(), Max(),
 Succ(), Pred())
 - Also support these order statistic operations: void OS-Select(root, i); int OS-Rank(x);

Review: Order Statistic Trees

- OS Trees augment red-black trees:
 - Associate a *size* field with each node in the tree
 - x->size records the size of subtree rooted at x, including x itself:


```
OS-Select(x, i)
{
    r = x->left->size + 1;
    if (i == r)
        return x;
    else if (i < r)
        return OS-Select(x->left, i);
    else
        return OS-Select(x->right, i-r);
}
```



```
OS-Select(x, i)
{
    r = x->left->size + 1;
    if (i == r)
        return x;
    else if (i < r)
        return OS-Select(x->left, i);
    else
        return OS-Select(x->right, i-r);
}
```



```
OS-Select(x, i)
{
    r = x->left->size + 1;
    if (i == r)
        return x;
    else if (i < r)
        return OS-Select(x->left, i);
    else
        return OS-Select(x->right, i-r);
}
```



```
OS-Select(x, i)
{
    r = x->left->size + 1;
    if (i == r)
        return x;
    else if (i < r)
        return OS-Select(x->left, i);
    else
        return OS-Select(x->right, i-r);
}
```



```
OS-Select(x, i)
{
    r = x->left->size + 1;
    if (i == r)
        return x;
    else if (i < r)
        return OS-Select(x->left, i);
    else
        return OS-Select(x->right, i-r);
}
```


• Example: show OS-Select(*root*, 5):

Note: use a sentinel NIL element at the leaves with size = 0 to simplify code, avoid testing for NULL

Review: Determining The Rank Of An Element

Review: Determining The Rank Of An Element

Review: Determining The Rank Of An Element

Review: Determining The Rank Of An Element

Review: Determining The Rank Of An Element

Review: Maintaining Subtree Sizes

- So by keeping subtree sizes, order statistic operations can be done in O(lg n) time
- Next: maintain sizes during Insert() and Delete() operations
 - Insert(): Increment size fields of nodes traversed during search down the tree
 - Delete(): Decrement sizes along a path from the deleted node to the root
 - Both: Update sizes correctly during rotations

Reivew: Maintaining Subtree Sizes

- Note that rotation invalidates only *x* and *y*
- Can recalculate their sizes in constant time
- Thm 15.1: can compute any property in O(lg n) time that depends only on node, left child, and right child

Review: Interval Trees

- The problem: maintain a set of intervals
 - E.g., time intervals for a scheduling program:

7 • 10

5 • • • 11 • • • 19

 $4 \bullet \bullet 8 \qquad 15 \bullet \bullet 18 \quad 21 \bullet \bullet 23$

- Query: find an interval in the set that overlaps a given query interval
 - $\circ \ [14,16] \rightarrow [15,18]$
 - $[16,19] \rightarrow [15,18]$ or [17,19]
 - \circ [12,14] \rightarrow NULL

Interval Trees

- Following the methodology:
 - Pick underlying data structure

• Red-black trees will store intervals, keyed on $i \rightarrow low$

- Decide what additional information to store
 - \circ Store the maximum endpoint in the subtree rooted at *i*
- Figure out how to maintain the information
 Insert: update max on way down, during rotations

• Delete: similar

Develop the desired new operations

Searching Interval Trees

```
IntervalSearch(T, i)
{
     x = T - root;
     while (x != NULL && !overlap(i, x->interval))
          if (x \rightarrow left != NULL \&\& x \rightarrow left \rightarrow max \ge i \rightarrow low)
                x = x->left;
          else
                x = x - right;
     return x
}
```

• Running time: O(lg n)

Review: Correctness of IntervalSearch()

- Key idea: need to check only 1 of node's 2 children
 - Case 1: search goes right
 - \circ Show that \exists overlap in right subtree, or no overlap at all
 - Case 2: search goes left
 - \circ Show that \exists overlap in left subtree, or no overlap at all

Review: Correctness of IntervalSearch()

- Case 1: if search goes right, ∃ overlap in the right subtree or no overlap in either subtree
 - If \exists overlap in right subtree, we're done
 - Otherwise:

• $x \rightarrow \text{left} = \text{NULL}$, or $x \rightarrow \text{left} \rightarrow \text{max} < x \rightarrow \text{low} (Why?)$

• Thus, no overlap in left subtree!

```
while (x != NULL && !overlap(i, x->interval))
    if (x->left != NULL && x->left->max ≥ i->low)
        x = x->left;
    else
        x = x->right;
    return x;
```

Review: Correctness of IntervalSearch()

- Case 2: if search goes left, ∃ overlap in the left subtree or no overlap in either subtree
 - If \exists overlap in left subtree, we're done
 - Otherwise:
 - ∘ i →low ≤ x →left →max, by branch condition
 - $x \rightarrow left \rightarrow max = y \rightarrow high for some y in left subtree$
 - Since i and y don't overlap and i $\rightarrow low \le y \rightarrow high$, i $\rightarrow high < y \rightarrow low$
 - Since tree is sorted by low's, i \rightarrow high < any low in right subtree
 - Thus, no overlap in right subtree

```
while (x != NULL && !overlap(i, x->interval))
    if (x->left != NULL && x->left->max ≥ i->low)
        x = x->left;
    else
        x = x->right;
    return x;
```