
Algorithms

Review for Final

Final Exam

● Coverage: the whole semester

● Goal: doable in 2 hours

● Cheat sheet: you are allowed two 8’11” sheets,

both sides

Final Exam: Study Tips

● Study tips:

■ Study each lecture

■ Study the homework and homework solutions

■ Study the midterm exams

● Re-make your previous cheat sheets

■ I recommend handwriting or typing them

■ Think about what you should have had on it the

first time…cheat sheets is about identifying

important concepts

Graph Representation

● Adjacency list

● Adjacency matrix

● Tradeoffs:

■ What makes a graph dense?

■ What makes a graph sparse?

■ What about planar graphs?

Basic Graph Algorithms

● Breadth-first search

■ What can we use BFS to calculate?

■ A: shortest-path distance to source vertex

● Depth-first search

■ Tree edges, back edges, cross and forward edges

■ What can we use DFS for?

■ A: finding cycles, topological sort

Topological Sort, MST

● Topological sort

■ Examples: getting dressed, project dependency

■ To what kind of graph does topological sort apply?

● Minimum spanning tree

■ Optimal substructure

■ Min edge theorem (enables greedy approach)

MST Algorithms

● Prim’s algorithm

■ What is the bottleneck in Prim’s algorithm?

■ A: priority queue operations

● Kruskal’s algorithm

■ What is the bottleneck in Kruskal’s algorithm?

■ Answer: depends on disjoint-set implementation

○ As covered in class, disjoint-set union operations

○ As described in book, sorting the edges

Single-Source Shortest Path

● Optimal substructure

● Key idea: relaxation of edges

● What does the Bellman-Ford algorithm do?

■ What is the running time?

● What does Dijkstra’s algorithm do?

■ What is the running time?

■ When does Dijkstra’s algorithm not apply?

Disjoint-Set Union

● We talked about representing sets as linked

lists, every element stores pointer to list head

● What is the cost of merging sets A and B?

■ A: O(max(|A|, |B|))

● What is the maximum cost of merging n

1-element sets into a single n-element set?

■ A: O(n2)

● How did we improve this? By how much?

■ A: always copy smaller into larger: O(n lg n)

Amortized Analysis

● Idea: worst-case cost of an operation may

overestimate its cost over course of algorithm

● Goal: get a tighter amortized bound on its cost

■ Aggregate method: total cost of operation over

course of algorithm divided by # operations

○ Example: disjoint-set union

■ Accounting method: “charge” a cost to each

operation, accumulate unused cost in bank, never

go negative

○ Example: dynamically-doubling arrays

Dynamic Programming

● Indications: optimal substructure, repeated

subproblems

● What is the difference between memoization

and dynamic programming?

● A: same basic idea, but:

■ Memoization: recursive algorithm, looking up

subproblem solutions after computing once

■ Dynamic programming: build table of subproblem

solutions bottom-up

LCS Via Dynamic Programming

● Longest common subsequence (LCS) problem:

■ Given two sequences x[1..m] and y[1..n], find the

longest subsequence which occurs in both

● Brute-force algorithm: 2m subsequences of x to

check against n elements of y: O(n 2m)

● Define c[i,j] = length of LCS of x[1..i], y[1..j]

● Theorem:





−−

=+−−
=

otherwise]),1[],1,[max(

],[][if1]1,1[
],[

jicjic

jyixjic
jic

Greedy Algorithms

● Indicators:

■ Optimal substructure

■ Greedy choice property: a locally optimal choice

leads to a globally optimal solution

● Example problems:

■ Activity selection: Set of activities, with start and

end times. Maximize compatible set of activities.

■ Fractional knapsack: sort items by $/lb, then take

items in sorted order

■ MST

NP-Completeness

● What do we mean when we say a problem

is in P?

■ A: A solution can be found in polynomial time

● What do we mean when we say a problem

is in NP?

■ A: A solution can be verified in polynomial time

● What is the relation between P and NP?

■ A: P ⊆ NP, but no one knows whether P = NP

Review: NP-Complete

● What, intuitively, does it mean if we can reduce

problem P to problem Q?

■ P is “no harder than” Q

● How do we reduce P to Q?

■ Transform instances of P to instances of Q in polynomial

time s.t. Q: “yes” iff P: “yes”

● What does it mean if Q is NP-Hard?

■ Every problem P∈NP ≤p Q

● What does it mean if Q is NP-Complete?

■ Q is NP-Hard and Q ∈ NP

Review:

Proving Problems NP-Complete

● What was the first problem shown to be

NP-Complete?

● A: Boolean satisfiability (SAT), by Cook

● How do we usually prove that a problem R

is NP-Complete?

● A: Show R ∈NP, and reduce a known

NP-Complete problem Q to R

Review:

Reductions

● Review the reductions we’ve covered:

■ Directed hamiltonian cycle � undirected

hamiltonian cycle

■ Undirected hamiltonian cycle � traveling

salesman problem

■ 3-CNF � k-clique

■ k-clique � vertex cover

■ Homework 7

Next: Detailed Review

● Up next: a detailed review of the first half of

the course

■ The following 100+ slides are intended as a

resource for your studying

■ Since you probably remember the more recent

stuff better, I just provide this for the early material

Review: Induction

● Suppose

■ S(k) is true for fixed constant k

○ Often k = 0

■ S(n) � S(n+1) for all n >= k

● Then S(n) is true for all n >= k

Proof By Induction

● Claim:S(n) is true for all n >= k

● Basis:

■ Show formula is true when n = k

● Inductive hypothesis:

■ Assume formula is true for an arbitrary n

● Step:

■ Show that formula is then true for n+1

Induction Example:

Gaussian Closed Form

● Prove 1 + 2 + 3 + … + n = n(n+1) / 2

■ Basis:

○ If n = 0, then 0 = 0(0+1) / 2

■ Inductive hypothesis:

○ Assume 1 + 2 + 3 + … + n = n(n+1) / 2

■ Step (show true for n+1):

1 + 2 + … + n + n+1 = (1 + 2 + …+ n) + (n+1)

= n(n+1)/2 + n+1 = [n(n+1) + 2(n+2)]/2

= (n+1)(n+2)/2 = (n+1)(n+1 + 1) / 2

Induction Example:

Geometric Closed Form

● Prove a0 + a1 + … + an = (an+1 - 1)/(a - 1) for

all a != 1

■ Basis: show that a0 = (a0+1 - 1)/(a - 1)

a0 = 1 = (a1 - 1)/(a - 1)

■ Inductive hypothesis:

○ Assume a0 + a1 + … + an = (an+1 - 1)/(a - 1)

■ Step (show true for n+1):

a0 + a1 + … + an+1 = a0 + a1 + … + an + an+1

= (an+1 - 1)/(a - 1) + an+1 = (an+1+1 - 1)(a - 1)

Review: Analyzing Algorithms

● We are interested in asymptotic analysis:

■ Behavior of algorithms as problem size gets large

■ Constants, low-order terms don’t matter

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

30 10 40 20

1 2 3 4

i = ∅ j = ∅ key = ∅
A[j] = ∅ A[j+1] = ∅

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

30 10 40 20

1 2 3 4

i = 2 j = 1 key = 10

A[j] = 30 A[j+1] = 10

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

30 30 40 20

1 2 3 4

i = 2 j = 1 key = 10

A[j] = 30 A[j+1] = 30

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

30 30 40 20

1 2 3 4

i = 2 j = 1 key = 10

A[j] = 30 A[j+1] = 30

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

30 30 40 20

1 2 3 4

i = 2 j = 0 key = 10

A[j] = ∅ A[j+1] = 30

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

30 30 40 20

1 2 3 4

i = 2 j = 0 key = 10

A[j] = ∅ A[j+1] = 30

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 20

1 2 3 4

i = 2 j = 0 key = 10

A[j] = ∅ A[j+1] = 10

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 20

1 2 3 4

i = 3 j = 0 key = 10

A[j] = ∅ A[j+1] = 10

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 20

1 2 3 4

i = 3 j = 0 key = 40

A[j] = ∅ A[j+1] = 10

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 20

1 2 3 4

i = 3 j = 0 key = 40

A[j] = ∅ A[j+1] = 10

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 20

1 2 3 4

i = 3 j = 2 key = 40

A[j] = 30 A[j+1] = 40

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 20

1 2 3 4

i = 3 j = 2 key = 40

A[j] = 30 A[j+1] = 40

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 20

1 2 3 4

i = 3 j = 2 key = 40

A[j] = 30 A[j+1] = 40

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 20

1 2 3 4

i = 4 j = 2 key = 40

A[j] = 30 A[j+1] = 40

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 20

1 2 3 4

i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 40

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 20

1 2 3 4

i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 40

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 20

1 2 3 4

i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 20

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 20

1 2 3 4

i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 20

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 40

1 2 3 4

i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 40

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 40

1 2 3 4

i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 40

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 40

1 2 3 4

i = 4 j = 3 key = 20

A[j] = 40 A[j+1] = 40

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 40

1 2 3 4

i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 40

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 40 40

1 2 3 4

i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 40

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 30 40

1 2 3 4

i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 30

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 30 40

1 2 3 4

i = 4 j = 2 key = 20

A[j] = 30 A[j+1] = 30

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 30 40

1 2 3 4

i = 4 j = 1 key = 20

A[j] = 10 A[j+1] = 30

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 30 30 40

1 2 3 4

i = 4 j = 1 key = 20

A[j] = 10 A[j+1] = 30

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 20 30 40

1 2 3 4

i = 4 j = 1 key = 20

A[j] = 10 A[j+1] = 20

An Example: Insertion Sort

InsertionSort(A, n) {

for i = 2 to n {

key = A[i]

j = i - 1;

while (j > 0) and (A[j] > key) {

A[j+1] = A[j]

j = j - 1

}

A[j+1] = key

}

}

10 20 30 40

1 2 3 4

i = 4 j = 1 key = 20

A[j] = 10 A[j+1] = 20

Done!

Insertion Sort

Statement Effort
InsertionSort(A, n) {

for i = 2 to n { c1n

key = A[i] c2(n-1)

j = i - 1; c3(n-1)

while (j > 0) and (A[j] > key) { c4T

A[j+1] = A[j] c5(T-(n-1))

j = j - 1 c6(T-(n-1))

} 0

A[j+1] = key c7(n-1)

} 0

}

T = t2 + t3 + … + tn where ti is number of while expression evaluations for the ith

for loop iteration

Analyzing Insertion Sort

● T(n) = c1n + c2(n-1) + c3(n-1) + c4T + c5(T - (n-1)) + c6(T - (n-1)) + c7(n-1)

= c8T + c9n + c10

● What can T be?

■ Best case -- inner loop body never executed
○ ti = 1 � T(n) is a linear function

■ Worst case -- inner loop body executed for all
previous elements
○ ti = i � T(n) is a quadratic function

■ If T is a quadratic function, which terms in the
above equation matter?

Upper Bound Notation

● We say InsertionSort’s run time is O(n2)

■ Properly we should say run time is in O(n2)

■ Read O as “Big-O” (you’ll also hear it as “order”)

● In general a function

■ f(n) is O(g(n)) if there exist positive constants c

and n0 such that f(n) ≤ c ⋅ g(n) for all n ≥ n0

● Formally

■ O(g(n)) = { f(n): ∃ positive constants c and n0 such

that f(n) ≤ c ⋅ g(n) ∀ n ≥ n0

Big O Fact

● A polynomial of degree k is O(nk)

● Proof:

■ Suppose f(n) = bkn
k + bk-1n

k-1 + … + b1n + b0

○ Let ai = | bi |

■ f(n) ≤ akn
k + ak-1n

k-1 + … + a1n + a0

k

i

k

k

i

i

k
cnan

n

n
an ≤≤≤ ∑∑

Lower Bound Notation

● We say InsertionSort’s run time is Ω(n)

● In general a function

■ f(n) is Ω(g(n)) if ∃ positive constants c and n0 such

that 0 ≤ c⋅g(n) ≤ f(n) ∀ n ≥ n0

Asymptotic Tight Bound

● A function f(n) is Θ(g(n)) if ∃ positive

constants c1, c2, and n0 such that

c1 g(n) ≤ f(n) ≤ c2 g(n) ∀ n ≥ n0

Other Asymptotic Notations

● A function f(n) is o(g(n)) if ∃ positive

constants c and n0 such that

f(n) < c g(n) ∀ n ≥ n0

● A function f(n) is ω(g(n)) if ∃ positive

constants c and n0 such that

c g(n) < f(n) ∀ n ≥ n0

● Intuitively,
■ o() is like <

■ O() is like ≤

■ ω() is like >

■ Ω() is like ≥

■ Θ() is like =

Review: Recurrences

● Recurrence: an equation that describes a function in terms of

its value on smaller functions





>

=

−+
=

0

0

)1(

0
)(

n

n

nsc
ns





>−+

=
=

0)1(

00
)(

nnsn

n
ns










>+








=

=
1

2
2

1

)(

nc
n

T

nc

nT













>+








=

=

1

1

)(

ncn
b

n
aT

nc

nT

Review: Solving Recurrences

● Substitution method

● Iteration method

● Master method

Review: Substitution Method

● Substitution Method:

■ Guess the form of the answer, then use induction

to find the constants and show that solution works

■ Example:

○ T(n) = 2T(n/2) + Θ(n) � T(n) = Θ(n lg n)

○ T(n) = 2T(�n/2� + n � ???

Review: Substitution Method

● Substitution Method:

■ Guess the form of the answer, then use induction

to find the constants and show that solution works

■ Examples:

○ T(n) = 2T(n/2) + Θ(n) � T(n) = Θ(n lg n)

○ T(n) = 2T(�n/2�) + n � T(n) = Θ(n lg n)

■ We can show that this holds by induction

Substitution Method

● Our goal: show that

T(n) = 2T(n/2) + n = O(n lg n)

● Thus, we need to show that T(n) ≤ c n lg n

with an appropriate choice of c

■ Inductive hypothesis: assume

T(n/2) ≤ c n/2 lg n/2

■ Substitute back into recurrence to show that

T(n) ≤ c n lg n follows, when c ≥ 1

(show on board)

Review: Iteration Method

● Iteration method:

■ Expand the recurrence k times

■ Work some algebra to express as a summation

■ Evaluate the summation

● s(n) =

c + s(n-1)

c + c + s(n-2)

2c + s(n-2)

2c + c + s(n-3)

3c + s(n-3)

…

kc + s(n-k) = ck + s(n-k)





>−+

=
=

0)1(

00
)(

nnsc

n
nsReview:

● So far for n >= k we have

■ s(n) = ck + s(n-k)

● What if k = n?

■ s(n) = cn + s(0) = cn





>−+

=
=

0)1(

00
)(

nnsc

n
nsReview:

● T(n) =

2T(n/2) + c

2(2T(n/2/2) + c) + c

22T(n/22) + 2c + c

22(2T(n/22/2) + c) + 3c

23T(n/23) + 4c + 3c

23T(n/23) + 7c

23(2T(n/23/2) + c) + 7c

24T(n/24) + 15c

…

2kT(n/2k) + (2k - 1)c







>+







=

= 1
2

2

1

)(
nc

n
T

nc

nTReview:

● So far for n > 2k we have

■ T(n) = 2kT(n/2k) + (2k - 1)c

● What if k = lg n?

■ T(n) = 2lg n T(n/2lg n) + (2lg n - 1)c

= n T(n/n) + (n - 1)c

= n T(1) + (n-1)c

= nc + (n-1)c = (2n - 1)c







>+







=

= 1
2

2

1

)(
nc

n
T

nc

nTReview:

Review: The Master Theorem

● Given: a divide and conquer algorithm

■ An algorithm that divides the problem of size n

into a subproblems, each of size n/b

■ Let the cost of each stage (i.e., the work to divide

the problem + combine solved subproblems) be

described by the function f(n)

● Then, the Master Theorem gives us a

cookbook for the algorithm’s running time:

Review: The Master Theorem

● if T(n) = aT(n/b) + f(n) then

()

()

()

()

()

()

















<

>ε

















<

Ω=

Θ=

=

Θ

Θ

Θ

=

ε+

ε−

1

0

largefor)()/(

 AND)(

)(

)(

)(

log)(

log

log

log

log

log

c

nncfbnaf

nnf

nnf

nOnf

nf

nn

n

nT

a

a

a

a

a

b

b

b

b

b

Review: Merge Sort

MergeSort(A, left, right) {

if (left < right) {

mid = floor((left + right) / 2);

MergeSort(A, left, mid);

MergeSort(A, mid+1, right);

Merge(A, left, mid, right);

}

}

// Merge() takes two sorted subarrays of A and

// merges them into a single sorted subarray of A.

// Merge()takes O(n) time, n = length of A

Review: Analysis of Merge Sort

Statement Effort

● So T(n) = Θ(1) when n = 1, and

2T(n/2) + Θ(n) when n > 1

● Solving this recurrence (how?) gives T(n) = n lg n

MergeSort(A, left, right) { T(n)

if (left < right) { Θ(1)
mid = floor((left + right) / 2); Θ(1)
MergeSort(A, left, mid); T(n/2)

MergeSort(A, mid+1, right); T(n/2)

Merge(A, left, mid, right); Θ(n)
}

}

Review: Heaps

● A heap is a “complete” binary tree, usually

represented as an array:

16

4 10

14 7 9 3

2 8 1

16 14 10 8 7 9 3 2 4 1A =

Review: Heaps

● To represent a heap as an array:

Parent(i) { return i/2; }

Left(i) { return 2*i; }

right(i) { return 2*i + 1; }

Review: The Heap Property

● Heaps also satisfy the heap property:

A[Parent(i)] ≥ A[i] for all nodes i > 1

■ In other words, the value of a node is at most the

value of its parent

■ The largest value is thus stored at the root (A[1])

● Because the heap is a binary tree, the height of

any node is at most Θ(lg n)

Review: Heapify()

● Heapify(): maintain the heap property

■ Given: a node i in the heap with children l and r

■ Given: two subtrees rooted at l and r, assumed to

be heaps

■ Action: let the value of the parent node “float

down” so subtree at i satisfies the heap property

○ If A[i] < A[l] or A[i] < A[r], swap A[i] with the largest

of A[l] and A[r]

○ Recurse on that subtree

■ Running time: O(h), h = height of heap = O(lg n)

Review: BuildHeap()

● BuildHeap(): build heap bottom-up by

running Heapify() on successive subarrays

■ Walk backwards through the array from n/2 to 1,
calling Heapify() on each node.

■ Order of processing guarantees that the children of

node i are heaps when i is processed

● Easy to show that running time is O(n lg n)

● Can be shown to be O(n)

■ Key observation: most subheaps are small

Review: Heapsort()

● Heapsort(): an in-place sorting algorithm:

■ Maximum element is at A[1]

■ Discard by swapping with element at A[n]

○ Decrement heap_size[A]

○ A[n] now contains correct value

■ Restore heap property at A[1] by calling
Heapify()

■ Repeat, always swapping A[1] for A[heap_size(A)]

● Running time: O(n lg n)

■ BuildHeap: O(n), Heapify: n * O(lg n)

Review: Priority Queues

● The heap data structure is often used for

implementing priority queues

■ A data structure for maintaining a set S of

elements, each with an associated value or key

■ Supports the operations Insert(),

Maximum(), and ExtractMax()

■ Commonly used for scheduling, event simulation

Priority Queue Operations

● Insert(S, x) inserts the element x into set S

● Maximum(S) returns the element of S with

the maximum key

● ExtractMax(S) removes and returns the

element of S with the maximum key

Implementing Priority Queues

HeapInsert(A, key) // what’s running time?

{

heap_size[A] ++;

i = heap_size[A];

while (i > 1 AND A[Parent(i)] < key)

{

A[i] = A[Parent(i)];

i = Parent(i);

}

A[i] = key;

}

Implementing Priority Queues

HeapMaximum(A)

{

// This one is really tricky:

return A[i];

}

Implementing Priority Queues

HeapExtractMax(A)

{

if (heap_size[A] < 1) { error; }

max = A[1];

A[1] = A[heap_size[A]]

heap_size[A] --;

Heapify(A, 1);

return max;

}

Example: Combat Billiards

● Extract the next collision Ci from the queue

● Advance the system to the time Ti of the collision

● Recompute the next collision(s) for the ball(s)

involved

● Insert collision(s) into the queue, using the time of

occurrence as the key

● Find the next overall collision Ci+1 and repeat

Review: Quicksort

● Quicksort pros:

■ Sorts in place

■ Sorts O(n lg n) in the average case

■ Very efficient in practice

● Quicksort cons:

■ Sorts O(n2) in the worst case

■ Naïve implementation: worst-case = sorted

■ Even picking a different pivot, some particular

input will take O(n2) time

Review: Quicksort

● Another divide-and-conquer algorithm

■ The array A[p..r] is partitioned into two non-

empty subarrays A[p..q] and A[q+1..r]

○ Invariant: All elements in A[p..q] are less than all

elements in A[q+1..r]

■ The subarrays are recursively quicksorted

■ No combining step: two subarrays form an

already-sorted array

Review: Quicksort Code

Quicksort(A, p, r)

{

if (p < r)

{

q = Partition(A, p, r);

Quicksort(A, p, q);

Quicksort(A, q+1, r);

}

}

Review: Partition Code

Partition(A, p, r)

x = A[p];

i = p - 1;

j = r + 1;

while (TRUE)

repeat

j--;

until A[j] <= x;

repeat

i++;

until A[i] >= x;

if (i < j)

Swap(A, i, j);

else

return j;

partition() runs in O(n) time

Review: Analyzing Quicksort

● What will be the worst case for the algorithm?

■ Partition is always unbalanced

● What will be the best case for the algorithm?

■ Partition is perfectly balanced

● Which is more likely?

■ The latter, by far, except...

● Will any particular input elicit the worst case?

■ Yes: Already-sorted input

Review: Analyzing Quicksort

● In the worst case:

T(1) = Θ(1)

T(n) = T(n - 1) + Θ(n)

● Works out to

T(n) = Θ(n2)

Review: Analyzing Quicksort

● In the best case:

T(n) = 2T(n/2) + Θ(n)

● Works out to

T(n) = Θ(n lg n)

Review: Analyzing Quicksort

● Average case works out to T(n) = Θ(n lg n)

● Glance over the proof (lecture 6) but you

won’t have to know the details

● Key idea: analyze the running time based on

the expected split caused by Partition()

Review: Improving Quicksort

● The real liability of quicksort is that it runs in

O(n2) on already-sorted input

● Book discusses two solutions:

■ Randomize the input array, OR

■ Pick a random pivot element

● How do these solve the problem?

■ By insuring that no particular input can be chosen

to make quicksort run in O(n2) time

Sorting Summary

● Insertion sort:

■ Easy to code

■ Fast on small inputs (less than ~50 elements)

■ Fast on nearly-sorted inputs

■ O(n2) worst case

■ O(n2) average (equally-likely inputs) case

■ O(n2) reverse-sorted case

Sorting Summary

● Merge sort:

■ Divide-and-conquer:

○ Split array in half

○ Recursively sort subarrays

○ Linear-time merge step

■ O(n lg n) worst case

■ Doesn’t sort in place

Sorting Summary

● Heap sort:

■ Uses the very useful heap data structure

○ Complete binary tree

○ Heap property: parent key > children’s keys

■ O(n lg n) worst case

■ Sorts in place

■ Fair amount of shuffling memory around

Sorting Summary

● Quick sort:

■ Divide-and-conquer:

○ Partition array into two subarrays, recursively sort

○ All of first subarray < all of second subarray

○ No merge step needed!

■ O(n lg n) average case

■ Fast in practice

■ O(n2) worst case

○ Naïve implementation: worst case on sorted input

○ Address this with randomized quicksort

Review: Comparison Sorts

● Comparison sorts: O(n lg n) at best

■ Model sort with decision tree

■ Path down tree = execution trace of algorithm

■ Leaves of tree = possible permutations of input

■ Tree must have n! leaves, so O(n lg n) height

Review: Counting Sort

● Counting sort:

■ Assumption: input is in the range 1..k

■ Basic idea:

○ Count number of elements k ≤ each element i

○ Use that number to place i in position k of sorted array

■ No comparisons! Runs in time O(n + k)

■ Stable sort

■ Does not sort in place:

○ O(n) array to hold sorted output

○ O(k) array for scratch storage

Review: Counting Sort

1 CountingSort(A, B, k)

2 for i=1 to k

3 C[i]= 0;

4 for j=1 to n

5 C[A[j]] += 1;

6 for i=2 to k

7 C[i] = C[i] + C[i-1];

8 for j=n downto 1

9 B[C[A[j]]] = A[j];

10 C[A[j]] -= 1;

Review: Radix Sort

● Radix sort:

■ Assumption: input has d digits ranging from 0 to k

■ Basic idea:

○ Sort elements by digit starting with least significant

○ Use a stable sort (like counting sort) for each stage

■ Each pass over n numbers with d digits takes time

O(n+k), so total time O(dn+dk)

○ When d is constant and k=O(n), takes O(n) time

■ Fast! Stable! Simple!

■ Doesn’t sort in place

Review: Binary Search Trees

● Binary Search Trees (BSTs) are an important

data structure for dynamic sets

● In addition to satellite data, elements have:

■ key: an identifying field inducing a total ordering

■ left: pointer to a left child (may be NULL)

■ right: pointer to a right child (may be NULL)

■ p: pointer to a parent node (NULL for root)

Review: Binary Search Trees

● BST property:

key[left(x)] ≤ key[x] ≤ key[right(x)]

● Example:

F

B H

KDA

Review: Inorder Tree Walk

● An inorder walk prints the set in sorted order:

TreeWalk(x)

TreeWalk(left[x]);

print(x);

TreeWalk(right[x]);

■ Easy to show by induction on the BST property

■ Preorder tree walk: print root, then left, then right

■ Postorder tree walk: print left, then right, then root

Review: BST Search

TreeSearch(x, k)

if (x = NULL or k = key[x])

return x;

if (k < key[x])

return TreeSearch(left[x], k);

else

return TreeSearch(right[x], k);

Review: BST Search (Iterative)

IterativeTreeSearch(x, k)

while (x != NULL and k != key[x])

if (k < key[x])

x = left[x];

else

x = right[x];

return x;

Review: BST Insert

● Adds an element x to the tree so that the binary

search tree property continues to hold

● The basic algorithm

■ Like the search procedure above

■ Insert x in place of NULL

■ Use a “trailing pointer” to keep track of where you

came from (like inserting into singly linked list)

● Like search, takes time O(h), h = tree height

Review: Sorting With BSTs

● Basic algorithm:

■ Insert elements of unsorted array from 1..n

■ Do an inorder tree walk to print in sorted order

● Running time:

■ Best case: Ω(n lg n) (it’s a comparison sort)

■ Worst case: O(n2)

■ Average case: O(n lg n) (it’s a quicksort!)

Review: Sorting With BSTs

● Average case analysis

■ It’s a form of quicksort!

for i=1 to n

TreeInsert(A[i]);

InorderTreeWalk(root);

3 1 8 2 6 7 5

5 7

1 2 8 6 7 5

2 6 7 5

3

1 8

2 6

5 7

Review: More BST Operations

● Minimum:

■ Find leftmost node in tree

● Successor:

■ x has a right subtree: successor is minimum node

in right subtree

■ x has no right subtree: successor is first ancestor of

x whose left child is also ancestor of x

○ Intuition: As long as you move to the left up the tree,

you’re visiting smaller nodes.

● Predecessor: similar to successor

Review: More BST Operations

● Delete:

■ x has no children:

○ Remove x

■ x has one child:

○ Splice out x

■ x has two children:

○ Swap x with successor

○ Perform case 1 or 2 to delete it

F

B H

KDA

C
Example: delete K

or H or B

Review: Red-Black Trees

● Red-black trees:

■ Binary search trees augmented with node color

■ Operations designed to guarantee that the height

h = O(lg n)

Red-Black Properties

● The red-black properties:

1. Every node is either red or black

2. Every leaf (NULL pointer) is black

○ Note: this means every “real” node has 2 children

3. If a node is red, both children are black

○ Note: can’t have 2 consecutive reds on a path

4. Every path from node to descendent leaf contains the

same number of black nodes

5. The root is always black

● black-height: # black nodes on path to leaf

■ Lets us prove RB tree has height h ≤ 2 lg(n+1)

Operations On RB Trees

● Since height is O(lg n), we can show that all

BST operations take O(lg n) time

● Problem: BST Insert() and Delete() modify the

tree and could destroy red-black properties

● Solution: restructure the tree in O(lg n) time

■ You should understand the basic approach of these

operations

■ Key operation: rotation

RB Trees: Rotation

● Our basic operation for changing tree

structure:

● Rotation preserves inorder key ordering

● Rotation takes O(1) time (just swaps pointers)

y

x C

A B

x

A y

B C

rightRotate(y)

leftRotate(x)

Review: Skip Lists

● A relatively recent data structure

■ “A probabilistic alternative to balanced trees”

■ A randomized algorithm with benefits of r-b trees

○ O(lg n) expected search time

○ O(1) time for Min, Max, Succ, Pred

■ Much easier to code than r-b trees

■ Fast!

Review: Skip Lists

● The basic idea:

● Keep a doubly-linked list of elements

■ Min, max, successor, predecessor: O(1) time

■ Delete is O(1) time, Insert is O(1)+Search time

● Add each level-i element to level i+1 with

probability p (e.g., p = 1/2 or p = 1/4)

level 1

3 9 12 18 29 35 37

level 2

level 3

Review: Skip List Search

● To search for an element with a given key:

■ Find location in top list

○ Top list has O(1) elements with high probability

○ Location in this list defines a range of items in next list

■ Drop down a level and recurse

● O(1) time per level on average

● O(lg n) levels with high probability

● Total time: O(lg n)

Review: Skip List Insert

● Skip list insert: analysis

■ Do a search for that key

■ Insert element in bottom-level list

■ With probability p, recurse to insert in next level

■ Expected number of lists = 1+ p + p2 + … = ???

= 1/(1-p) = O(1) if p is constant

■ Total time = Search + O(1) = O(lg n) expected

● Skip list delete: O(1)

Review: Skip Lists

● O(1) expected time for most operations

● O(lg n) expected time for insert

● O(n2) time worst case

■ But random, so no particular order of insertion

evokes worst-case behavior

● O(n) expected storage requirements

● Easy to code

Review: Hashing Tables

● Motivation: symbol tables

■ A compiler uses a symbol table to relate symbols

to associated data

○ Symbols: variable names, procedure names, etc.

○ Associated data: memory location, call graph, etc.

■ For a symbol table (also called a dictionary), we

care about search, insertion, and deletion

■ We typically don’t care about sorted order

Review: Hash Tables

● More formally:

■ Given a table T and a record x, with key (=

symbol) and satellite data, we need to support:

○ Insert (T, x)

○ Delete (T, x)

○ Search(T, x)

■ Don’t care about sorting the records

● Hash tables support all the above in

O(1) expected time

Review: Direct Addressing

● Suppose:

■ The range of keys is 0..m-1

■ Keys are distinct

● The idea:

■ Use key itself as the address into the table

■ Set up an array T[0..m-1] in which

○ T[i] = x if x∈ T and key[x] = i

○ T[i] = NULL otherwise

■ This is called a direct-address table

Review: Hash Functions

● Next problem: collision

T

0

m - 1

h(k1)

h(k4)

h(k2) = h(k5)

h(k3)

k4

k2 k3

k1

k5

U

(universe of keys)

K

(actual

keys)

Review: Resolving Collisions

● How can we solve the problem of collisions?

● Open addressing

■ To insert: if slot is full, try another slot, and

another, until an open slot is found (probing)

■ To search, follow same sequence of probes as

would be used when inserting the element

● Chaining

■ Keep linked list of elements in slots

■ Upon collision, just add new element to list

Review: Chaining

● Chaining puts elements that hash to the same

slot in a linked list:

——

——

——

——

——

——

T

k4

k2
k3

k1

k5

U

(universe of keys)

K

(actual

keys)

k6

k8

k7

k1 k4
——

k5 k2

k3

k8 k6
——

——

k7
——

Review: Analysis Of Hash Tables

● Simple uniform hashing: each key in table is

equally likely to be hashed to any slot

● Load factor α = n/m = average # keys per slot

■ Average cost of unsuccessful search = O(1+α)

■ Successful search: O(1+ α/2) = O(1+ α)

■ If n is proportional to m, α = O(1)

● So the cost of searching = O(1) if we size our

table appropriately

Review: Choosing A Hash Function

● Choosing the hash function well is crucial

■ Bad hash function puts all elements in same slot

■ A good hash function:

○ Should distribute keys uniformly into slots

○ Should not depend on patterns in the data

● We discussed three methods:

■ Division method

■ Multiplication method

■ Universal hashing

Review: The Division Method

● h(k) = k mod m

■ In words: hash k into a table with m slots using the

slot given by the remainder of k divided by m

● Elements with adjacent keys hashed to

different slots: good

● If keys bear relation to m: bad

● Upshot: pick table size m = prime number not

too close to a power of 2 (or 10)

Review: The Multiplication Method

● For a constant A, 0 < A < 1:

● h(k) =  m (kA - kA) 

● Upshot:

■ Choose m = 2P

■ Choose A not too close to 0 or 1

■ Knuth: Good choice for A = (√5 - 1)/2

Fractional part of kA

Review: Universal Hashing

● When attempting to foil an malicious

adversary, randomize the algorithm

● Universal hashing: pick a hash function

randomly when the algorithm begins (not upon

every insert!)

■ Guarantees good performance on average, no

matter what keys adversary chooses

■ Need a family of hash functions to choose from

Review: Universal Hashing

● Let ς be a (finite) collection of hash functions

■ …that map a given universe U of keys…

■ …into the range {0, 1, …, m - 1}.

● If ς is universal if:

■ for each pair of distinct keys x, y ∈ U,

the number of hash functions h ∈ ς
for which h(x) = h(y) is |ς|/m

■ In other words:

○ With a random hash function from ς, the chance of a

collision between x and y (x ≠ y) is exactly 1/m

Review: A Universal Hash Function

● Choose table size m to be prime

● Decompose key x into r+1 bytes, so that

x = {x0, x1, …, xr}

■ Only requirement is that max value of byte < m

■ Let a = {a0, a1, …, ar} denote a sequence of r+1

elements chosen randomly from {0, 1, …, m - 1}

■ Define corresponding hash function ha ∈ ς:

■ With this definition, ς has mr+1 members

() mxaxh ii

r

i

a mod
0









= ∑

=

Review: Dynamic Order Statistics

● We’ve seen algorithms for finding the ith

element of an unordered set in O(n) time

● OS-Trees: a structure to support finding the ith

element of a dynamic set in O(lg n) time

■ Support standard dynamic set operations
(Insert(), Delete(), Min(), Max(),
Succ(), Pred())

■ Also support these order statistic operations:

void OS-Select(root, i);

int OS-Rank(x);

Review: Order Statistic Trees

● OS Trees augment red-black trees:

■ Associate a size field with each node in the tree

■ x->size records the size of subtree rooted at x,

including x itself:
M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

Review: OS-Select

● Example: show OS-Select(root, 5):

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

OS-Select(x, i)

{

r = x->left->size + 1;

if (i == r)

return x;

else if (i < r)

return OS-Select(x->left, i);

else

return OS-Select(x->right, i-r);

}

Review: OS-Select

● Example: show OS-Select(root, 5):

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

OS-Select(x, i)

{

r = x->left->size + 1;

if (i == r)

return x;

else if (i < r)

return OS-Select(x->left, i);

else

return OS-Select(x->right, i-r);

}

i = 5

r = 6

Review: OS-Select

● Example: show OS-Select(root, 5):

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

OS-Select(x, i)

{

r = x->left->size + 1;

if (i == r)

return x;

else if (i < r)

return OS-Select(x->left, i);

else

return OS-Select(x->right, i-r);

}

i = 5

r = 6

i = 5

r = 2

Review: OS-Select

● Example: show OS-Select(root, 5):

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

OS-Select(x, i)

{

r = x->left->size + 1;

if (i == r)

return x;

else if (i < r)

return OS-Select(x->left, i);

else

return OS-Select(x->right, i-r);

}

i = 5

r = 6

i = 5

r = 2

i = 3

r = 2

Review: OS-Select

● Example: show OS-Select(root, 5):

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

OS-Select(x, i)

{

r = x->left->size + 1;

if (i == r)

return x;

else if (i < r)

return OS-Select(x->left, i);

else

return OS-Select(x->right, i-r);

}

i = 5

r = 6

i = 5

r = 2

i = 3

r = 2

i = 1

r = 1

Review: OS-Select

● Example: show OS-Select(root, 5):

Note: use a sentinel NIL element at the leaves with

size = 0 to simplify code, avoid testing for NULL

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

OS-Select(x, i)

{

r = x->left->size + 1;

if (i == r)

return x;

else if (i < r)

return OS-Select(x->left, i);

else

return OS-Select(x->right, i-r);

}

i = 5

r = 6

i = 5

r = 2

i = 3

r = 2

i = 1

r = 1

Review: Determining The

Rank Of An Element

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

OS-Rank(T, x)

{

r = x->left->size + 1;

y = x;

while (y != T->root)

if (y == y->p->right)

r = r + y->p->left->size + 1;

y = y->p;

return r;

}

Idea: rank of right child x is one

more than its parent’s rank, plus

the size of x’s left subtree

Review: Determining The

Rank Of An Element

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

OS-Rank(T, x)

{

r = x->left->size + 1;

y = x;

while (y != T->root)

if (y == y->p->right)

r = r + y->p->left->size + 1;

y = y->p;

return r;

}

Example 1:

find rank of element with key H

y

r = 1

Review: Determining The

Rank Of An Element

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

OS-Rank(T, x)

{

r = x->left->size + 1;

y = x;

while (y != T->root)

if (y == y->p->right)

r = r + y->p->left->size + 1;

y = y->p;

return r;

}

Example 1:

find rank of element with key H

r = 1

y

r = 1+1+1 = 3

Review: Determining The

Rank Of An Element

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

OS-Rank(T, x)

{

r = x->left->size + 1;

y = x;

while (y != T->root)

if (y == y->p->right)

r = r + y->p->left->size + 1;

y = y->p;

return r;

}

Example 1:

find rank of element with key H

r = 1

r = 3

y

r = 3+1+1 = 5

Review: Determining The

Rank Of An Element

M

8

C

5

P

2

Q

1

A

1

F

3

D

1

H

1

OS-Rank(T, x)

{

r = x->left->size + 1;

y = x;

while (y != T->root)

if (y == y->p->right)

r = r + y->p->left->size + 1;

y = y->p;

return r;

}

Example 1:

find rank of element with key H

r = 1

r = 3

r = 5

y

r = 5

Review: Maintaining Subtree Sizes

● So by keeping subtree sizes, order statistic

operations can be done in O(lg n) time

● Next: maintain sizes during Insert() and

Delete() operations

■ Insert(): Increment size fields of nodes traversed

during search down the tree

■ Delete(): Decrement sizes along a path from the

deleted node to the root

■ Both: Update sizes correctly during rotations

Reivew: Maintaining Subtree Sizes

● Note that rotation invalidates only x and y

● Can recalculate their sizes in constant time

● Thm 15.1: can compute any property in O(lg n) time

that depends only on node, left child, and right child

y
19

x
11

x
19

y
12

rightRotate(y)

leftRotate(x)

6 4

7 6

4 7

Review: Interval Trees

● The problem: maintain a set of intervals

■ E.g., time intervals for a scheduling program:

■ Query: find an interval in the set that overlaps a

given query interval

○ [14,16] → [15,18]

○ [16,19] → [15,18] or [17,19]

○ [12,14] → NULL

107

115

84 1815 2321

17 19

Interval Trees

● Following the methodology:

■ Pick underlying data structure

○ Red-black trees will store intervals, keyed on i→low

■ Decide what additional information to store

○ Store the maximum endpoint in the subtree rooted at i

■ Figure out how to maintain the information

○ Insert: update max on way down, during rotations

○ Delete: similar

■ Develop the desired new operations

Searching Interval Trees

IntervalSearch(T, i)

{

x = T->root;

while (x != NULL && !overlap(i, x->interval))

if (x->left != NULL && x->left->max ≥ i->low)

x = x->left;

else

x = x->right;

return x

}

● Running time: O(lg n)

Review: Correctness of

IntervalSearch()

● Key idea: need to check only 1 of node’s 2

children

■ Case 1: search goes right

○ Show that ∃ overlap in right subtree, or no overlap at all

■ Case 2: search goes left

○ Show that ∃ overlap in left subtree, or no overlap at all

Review: Correctness of

IntervalSearch()

● Case 1: if search goes right, ∃ overlap in the right

subtree or no overlap in either subtree

■ If ∃ overlap in right subtree, we’re done

■ Otherwise:

○ x→left = NULL, or x → left → max < x → low (Why?)

○ Thus, no overlap in left subtree!

while (x != NULL && !overlap(i, x->interval))

if (x->left != NULL && x->left->max ≥ i->low)

x = x->left;

else

x = x->right;

return x;

Review: Correctness of

IntervalSearch()

● Case 2: if search goes left, ∃ overlap in the left

subtree or no overlap in either subtree

■ If ∃ overlap in left subtree, we’re done

■ Otherwise:

○ i →low ≤ x →left →max, by branch condition

○ x →left →max = y →high for some y in left subtree

○ Since i and y don’t overlap and i →low ≤ y →high,

i →high < y →low

○ Since tree is sorted by low’s, i →high < any low in right subtree

○ Thus, no overlap in right subtree
while (x != NULL && !overlap(i, x->interval))

if (x->left != NULL && x->left->max ≥ i->low)

x = x->left;

else

x = x->right;

return x;

