
BNF and EBNF

What is BNF?

• It stands for Backus-Naur Form

• It is a formal, mathematical way to specify
context-free grammars

• It is precise and unambiguous

• Before BNF, people specified
programming languages ambiguously, i.e.,
with English

How did BNF come about?

• John Backus presented a new notation
containing most of the elements of BNF at
a UNESCO conference

• His presentation was about Algol 58

• Peter Naur read this report and found that
he and Backus interpreted Algol differently

• He wanted even more precision

• So he created what we now know as BNF
for Algol 60

• Thus BNF was first published in Algol 60
Report

Who was John Backus?

• Backus invented FORTRAN (“FORMula

TRANslator”), the first high-level language

ever, circa 1954

• Major influence on the invention of

functional programming in 1970’s

• Won the 1977 Turing Award for BNF and

FORTRAN

Who was Peter Naur?

• Danish astronomer turned computer
scientist

• Born in 1928; picture on left is from 1968

A Bit More History…

• BNF originally stood for “Backus Normal Form”

• In 1964, Donald Knuth wrote a letter published

in Communications of the ACM in which he

suggests it stand for Backus-Naur form instead

• This was for two reasons:

• To recognize Naur’s contribution

• BNF is not technically a “normal form”; this

would imply that there would be only one correct

way of writing a grammar

What does BNF look like?

• Like this:

<number> ::= <digit> | <number> <digit>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

• “::=” means “is defined as” (some variants use
“:=” instead)

• “|” means “or”

• Angle brackets mean a nonterminal

• Symbols without angle brackets are terminals

More BNF Examples

• <while loop> ::= while (<condition>)

<statement>

• <assignment statement> ::= <variable> =

<expression>

• <statement list> ::= <statement> |

<statement list> <statement>

• <unsigned integer> ::= <digit> |

<unsigned integer><digit>

BNF for Expressions
<expression> ::= <expression> + <term>

| <expression> - <term>

| <term>

<term> ::= <term> * <factor>

| <term> / <factor>

| <factor>

<factor> ::= <primary> ^ <factor>

| <primary>

<primary> ::= <primary>

| <element>

<element> ::= (<expression>)

| <variable>

| <number>

Origin of EBNF
• Stands for “Extended Backus-Naur Form”

• After BNF appeared with Algol 60, lots of
people added their own extensions

• Niklaus Wirth wanted to see one form, so
he published “What Can We Do About the
Unnecessary Diversity of Notation for
Syntactic Definitions” in Communications
of the ACM in 1977

• He suggested the use of “[..]” for optional
symbols (0 or 1 occurrences), “{ .. }” for 0
or more occurrences.

• Did not mention “EBNF” or Kleene cross

Who was Niklaus Wirth?

• Born in Switzerland, 1934

• Desgined Pascal (1970),

Modula, Modula-2 (1980),

and Oberon (1988)

• Won the Turing Award in

1984

• Won the IEEE Computer

Pioneer Award in 1987

What is EBNF?

• EBNF is a few simple extensions to BNF
which make expressing grammars more
convenient; adds “syntactic sugar”

• Thus it is more concise than BNF

• EBNF is no more “powerful” than BNF; that
is, anything that can be expressed in EBNF
can also be expressed in BNF

• EBNF is widely used as the de facto
standard to define programming languages

What are the Extensions?
• They vary, but often are derived from

regular expression syntax

• “*” (The Kleene Star): means 0 or more

occurrences

• “+” (The Kleene Cross): means 1 or more
occurrences

• “?”: means 0 or 1 occurrences (sometimes
“[…]” used instead)

• Use of parentheses for grouping

BNF vs EBNF

• Grammar for decimal numbers in plain
BNF:

<expr> ::= '-' <num> | <num>

<num> ::= <digits>

| <digits> '.' <digits>

<digits> ::= <digit>

| <digit> <digits>

<digit> ::= '0' | '1' | '2' | '3' |

'4' | '5' | '6' | '7' | '8' | '9'

BNF vs EBNF

• Same grammar in EBNF:

<expr> := '-'? <digit>+ ('.' <digit>+)?

<digit> := '0' | '1' | '2' | '3' | '4' |

'5' | '6' | '7' | '8' | '9'

• So much more concise!

• An optional ‘-’, one or more digits, an optional
decimal point followed by one or more digits

Simple Conversions

• If you have a rule such as:

<expr> ::= <digits>

<digits> ::= <digit>

| <digit> <digits>

• You can replace it with:

<expr> ::= <digit>+

More Simple Conversions

• If you have a rule such as:

<expr> ::= <digits> | empty

• You can replace it with:

<expr> ::= <digit>*

More Simple Conversions

• If you have a rule such as:

<id> ::= <letter>

| <id><letter>

| <id><digit>

• You can replace it with:

<id> ::= <letter> (<letter> | <digit>)*

EBNF for Lisp

s_expression ::= atomic_symbol

| "(" s_expression "." s_expression ")"

| list

list ::= "(" s_expression* ")"

atomic_symbol ::= letter atom_part

atom_part ::= empty

| letter atom_part

| number atom_part

letter ::= "a" | "b" | " ..." | "z"

number ::= "1" | "2" | " ..." | "9"

Summary-BNF

• BNF uses following notations:
(i) Non-terminals enclosed in < and >.
(ii) Rules written as

X ::= Y
(1) X is LHS of rule and can only be a NT.
(2) Y is RHS of rule: Y can be

(a) a terminal, nonterminal, or concatenation of terminal
and nonterminals, or

(b) a set of strings separated by alternation symbol |.
Example:
< S >::= a < S > |a
• Notation ε: : Used to represent an empty string (a string of
length 0).

Extended BNF (EBNF)

• EBNF: adding more meta-notation⇒ shorter productions
• NTS begin with uppercase letters (discard <>)
• Repetitions (zero or more) are enclosed in {}

• Zero or one (options) are enclosed in []:
Ifstmt ::= if Cond then Stmt |

if Cond then Stmt else Stmt
⇒ Ifstmt ::= if Cond then Stmt [else Stmt]

• Use () to group items together:
Exp ::= Item {+ Item} | Item {- Item}
⇒ Exp ::= Item {(+|-) Item}
• Terminals that are grammar symbols (’[’ for instance) are
enclosed in quotes (‘’).

Summary

Conversion from EBNF to BNF and Vice Versa

• BNF to EBNF:

(i) Look for recursion in grammar:

A ::= a A | B

⇒ A ::= a { a } B

(ii) Look for common string that can be factored out with grouping and options.

A ::= a B | a

⇒ A := a [B]

• EBNF to BNF:

(i) Options: []

A ::= a [B] C

⇒ A’ ::= a N C N ::= B | ε

(ii) Repetition: {}

A ::= a { B1 B2 ... Bn } C

⇒ A’ ::= a N C N ::= B1 B2 ... Bn N | ε

