BNF and EBNF

What is BNF?

It stands for Backus-Naur Form

It is a formal, mathematical way to specity
context-free grammars

It Is precise and unambiguous

Before BNF, people specified
programming languages ambiguously, i.e.,
with English

How did BNF come about?

John Backus presented a new notation
containing most of the elements of BNF at
a UNESCO conference

His presentation was about Algol 58

Peter Naur read this report and found that
ne and Backus interpreted Algol differently

He wanted even more precision

So he created what we now know as BNF
for Algol 60

Thus BNF was first published in Algol 60
Report

Who was John Backus?

|

" *‘h?

arl

« Backus invented FORTRAN (“FORMula
TRANSslator”), the first high-level language
ever, circa 1954

« Major influence on the invention of
functional programming in 1970’s

« Won the 1977 Turing Award for BNF and
FORTRAN

Who was Peter Naur?

« Danish astronomer turned computer
scientist

» Born in 1928; picture on left is from 1968

A Bit More History...

BNF originally stood for “Backus Normal Form”

In 1964, Donald Knuth wrote a letter published
iIn Communications of the ACM in which he
suggests it stand for Backus-Naur form instead

This was for two reasons:
To recognize Naur’s contribution

BNF is not technically a “normal form”; this
would imply that there would be only one correct
way of writing a grammar

What does BNF look like?
e Like this:

<number> ::= <digit> | <number> <digit>
<digit> ::=0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 1| 8 1| 9
« “:="means “Is defined as” (some variants use
“.=” Instead)
“l!! means “Or”

* Angle brackets mean a nonterminal
« Symbols without angle brackets are terminals

More BNF Examples

<while loop> ::= while (<condition>)
<statement>

<assignment statement> ::= <variable> =
<expression>

<statement 1list> ::= <statement> |

<statement list> <statement>

<unsigned 1integer> ::= <digit> |
<unsigned integer><digit>

BNF for Expressions

<expression> ::= <expression> + <term>
| <expression> - <term>
| <term>

<term> ::= <term> * <factor>

| <term> / <factor>
| <factor>
<factor> ::= <primary> ~ <factor>
| <primary>
<prlmary> ::= <prilmary>
| <element>
<element> ::= (<expression>)
| <variable>

| <number>

Origin of EBNF

Stands for “Extended Backus-Naur Form”

After BNF appeared with Algol 60, lots of
people added their own extensions

Niklaus Wirth wanted to see one form, so
he published “What Can We Do About the
Unnecessary Diversity of Notation for
Syntactic Definitions” in Communications
of the ACM in 1977

le suggested the use of [..]” for optional
symbols (0 or 1 occurrences), “{ .. }" for O
Or more occurrences.

Did not mention “EBNF” or Kleene cross

Who was Niklaus Wirth?

Born in Switzerland, 1934

Desgined Pascal (1970),
Modula, Modula-2 (1980),
and Oberon (1988)

Won the Turing Award Iin
1984

Won the IEEE Computer
Pioneer Award in 1987

What is EBNF?

EBNF is a few simple extensions to BNF
which make expressing grammars more
convenient; adds “syntactic sugar”

Thus it is more concise than BNF

EBNF is no more “powerful” than BNF; that
IS, anything that can be expressed in EBNF
can also be expressed in BNF

EBNF is widely used as the de facto
standard to define programming languages

What are the Extensions?

They vary, but often are derived from
regular expression syntax

H*!!
(The Kleene Star): means 0 or more
occurrences

+” (The Kleene Cross): means 1 or more
occurrences

“?”. means 0 or 1 occurrences (sometimes
“[...]" used instead)

Use of parentheses for grouping

BNF vs EBNF

« Grammar for decimal numbers in plain
BNF:

<expr> ::= '-'" <num> | <num>
<num> ::= <digits>
| <digits> '.' <digits>
<digits> ::= <digit>
| <digit> <digits>
<digit> ::= '0O" | '"1"'" | '2'" | '3"'" |

'4' | '5' | '6' | '7' | '8' | '9'

BNF vs EBNF

« Same grammar in EBNF:

<expr> := '-'? <digit>+ ('.' <digit>+)?
<digit> ::= 'O0O" | "1" | '2' | '3"'" | '"4"' |
'5' | '6' | "7' | '8' | '9'

« SO0 much more concise!

* An optional ‘-, one or more digits, an optional
decimal point followed by one or more digits

Simple Conversions

* |f you have a rule such as:
<expr> ::= <digits>
<digits> ::= <digit>

| <digit> <digits>
* You can replace it with:
<expr> ::= <digit>+

More Simple Conversions

* |f you have a rule such as:
<expr> ::= <diglts> | empty

* You can replace it with:
<expr> ::= <diglt>*

More Simple Conversions

* |f you have a rule such as:
<1d> ::= <letter>

| <id><letter>

| <id><digit>

* You can replace it with:

<id> ::= <letter> (<letter> | <digit>)*

EBNF for Lisp

S_expression ::= atomic_symbol
| " (" s_expression "." s_expression ")"
| list

list ::= " (" s_expression* ")"

atomic_symbol ::= letter atom part

atom part = empty

| letter atom part

| number atom part

letter ::= "a" | "b" | " ..." | "z"

number A L AL L B A

Summary-BNF

« BNF uses following notations:
(i) Non-terminals enclosed in <and >.
(i) Rules written as
X:=Y
(1) Xis LHS of rule and can only be a NT.
(2) Yis RHS of rule: Y can be
(a) a terminal, nonterminal, or concatenation of terminal
and nonterminals, or
(b) a set of strings separated by alternation symbol /.
Example:
<S>=a<S>/a
 Notation €: : Used to represent an empty string (a string of
length 0).

Extended BNF (EBNF)

« EBNF: adding more meta-notation= shorter productions
* NTS begin with uppercase letters (discard <>)
 Repetitions (zero or more) are enclosed in {}

« Zero or one (options) are enclosed in []:
lfstmt ::= if Cond then Stmt |
if Cond then Stmt else Stmt
= lfstmt ::= if Cond then Stmt [else Stmt]
» Use () to group items together:
Exp ::= Item {+ ltem} | Item {- ltem}
= Exp ::= ltem {(+|-) ltem}
» Terminals that are grammar symbols ([’ for instance) are
enclosed in quotes ().

Summary

Conversion from EBNF to BNF and Vice Versa
* BNF to EBNF:
(i) Look for recursion in grammar:
A:=aA|B
=A:=af{a}B
(i) Look for common string that can be factored out with grouping and options.
A:=aB]|a
= A = a[B]
 EBNF to BNF:
(i) Options: []
A:=a[B]C
=A :=aNC N:=B]|¢
(i) Repetition: {}
A:=a{B1B2..Bn}C
A =aNC N:=B1B2..BnN|¢

