
Translation Models

• Grammars
– Terminal and non terminal symbols

– Grammar rules

– BNF notation

– Derivations, Parse trees and Ambiguity

• Grammars for programming languages
– Types of grammars

– Regular expressions and Context-free grammars

Grammars

Syntax is concerned with the structure of
programs. The formal description of the syntax
of a language is called grammar

Grammars consist of rewriting rules and may
be used for both recognition and generation of
sentences (statements).

Grammars are independent of the syntactic
analysis.

More about grammars

Word categories, constituents

The boy is reading a book.
The boy is reading an interesting book.

 The boy is reading a book by Mark Twain.

Terminal and non-terminal symbols,
grammar rules

Terminal - to represent the words
Non-terminal - to represent categories of
words and constituents.
Starting symbol S represents "sentence"

These symbols are used in grammar rules

Example

Rule Meaning
N boy N is the non-terminal symbol
 for "noun", "boy" is a
 terminal "symbol"

D the | a | an D is the non-terminal symbol
 for definite or indefinite
 articles.

NP D N this rule says that a noun
 phrase NP may consist of an
 article followed by a noun

BNF notation

Grammars for programming languages use a special
notation called BNF (Backus-Naur form)

The non-terminal symbols are enclosed in < >
Instead of the symbol ::= is used
The vertical bar is used in the same way - meaning
choice.
[] are used to represent optional constituents.

BNF notation is equivalent to the first notation in the
examples above.

BNF Example

The rule

<assignment statement> ::=

 <variable> = <arithmetic expression>

says that an assignment statement has

 a variable name on its left-hand side

 followed by the symbol "=",

 followed by an arithmetic expression

Derivations, Parse trees and
Ambiguity

Using a grammar, we can generate sentences.
The process is called derivation

Example :
 S SS | (S) | ()

generates all sequences of paired parentheses.

Derivation example

The rules of the grammar can be written
separately:

 Rule1: S SS

 Rule2: S (S)

 Rule3: S () Derivation of (()())

 S (S) by Rule2
 (SS) by Rule1
 (()S) by Rule3
 (()()) by Rule3

Parsing

Sentential forms - strings obtained at each
derivation step. May contain both terminal and
non-terminal symbols.

Sentence - the last string obtained in the
derivation, contains only terminal symbols.

Parsing - determines whether a string is a
correct sentence or not. It can be displayed in
the form of a parse tree

Parse Trees

(

 S

 S
)

 S
 S

(
(

)
)

Rule 2

Rule 1

Rule 3

A non-terminal symbol is
expanded by applying a
grammar rule that contains
the symbol in its left- hand
side.

Its children are the symbols in the right-
hand side of the rule.

Ambiguity

Grammar rules can generate two possible
parse trees for one and the same
sequence of terminal symbols.

Example
 Rule1: If_statement if Exp then S else S

Rule2: If_statement if Exp then S

if a < b then if c < y then write(yes) else write(no);

If a < b then

if c < y then write(yes)
else write(no);

If a < b then if c < y then write(yes)

else write(no);

Rule 2

Rule 1

Grammars for programming
languages

Four types of grammars

Regular grammars: (Type 3)
Rule format:

A a
 A aB

Context-free grammars (Type 2)
Rule format:
 A any string consisting of
 terminals and non-terminals

Types of grammars
(cont)

Context-sensitive grammars (Type 1)
Rule format:

String1 String2

|String1| |String2|, terminals and non-
terminals

General (unrestricted) grammars (Type 0)
Rule format:

String1 String2, no restrictions.

Regular grammars and regular
expressions

Operations on strings of symbols:
 concatenation - appending two strings

 Kleene star operation - any repetition of
the string. e.g. a* can be a, or aa, or aaaaaaa, etc

Regular expressions

Regular expressions:
 a form of representing regular grammars

Regular expressions on alphabet ∑
 string concatenations
 combined with the symbols U and *,
 possibly using '(' and ')'.

the empty expression: Ø

Examples
Let ∑ = {0,1}.
Examples of regular expressions are:

0,1, 010101, any combination of 0s and 1s
 generated strings:
0 U 1 0, 1

(0 U 1)1* 0, 01, 011, 0111,…, 1, 11, 111..

(0 U 1)*01 01, 001, 0001,… 1101, 1001,

 (any strings that end in 01)

Regular languages
Context-free languages

Regular languages are languages whose
sentences can be described by a regular
expression.

Regular expressions are used to describe
identifiers in programming languages and
arithmetic expressions.

Context-free grammars generate context-free
languages. They are used to describe
programming languages.

