
Inheritance and OOP

Objects

• Organized into groups with similar
characteristics

– they are said to be related by a common
characteristic

• Object-Oriented programming seeks to
provide mechanisms for modeling these
relationships

– this is where the Java word extends is used

11.1 Intro Example: A Trip to the
Aviary

• Consider a collection of birds which have
different properties

– name

– color (some of the same name are of different
colors)

– they eat different things

– they make different noises

– some make multiple kinds of sounds

We seek a program We seek a program

to simulate this

collection

Design Sketch

• Key is to design a Bird class hierarchy.

• Strategy

– design classes for objects

– identify characteristics classes have in common

– design superclasses to store common
characteristics

Hierarchy
Bird

call: ?

color:?

food:?

movement:?

WalkingBird

call: ?

color:?

food:?

movement:walked

FlyingBird

call: ?

color:?

food:?

movement:flew

Goose

call: honk

color: gray

food: bugs

Ostrich

call: neek-neek

color: brown

food: grass

Parrot

call: Squawk

color:?

food: fruit

Owl

call:?

color:?

food:mice

TalkingParrot

. . .

Coding

• Note Bird class, Figure 11.1

• Attributes common to all birds

– color

– food

– movement

Features of Bird Class

• Note attribute missing but getCall()
method present
– myCall varies in random fashion for different

kinds of birds

– getCall() is an abstract method –no
definition in the Bird class for the method

• Note toString() method invokes
getCall() even though not defined

– classes which extend Bird will so provide

Subclasses

// FlyingBird provides subclass of Bird

abstract class FlyingBird extends Bird

{

 public FlyingBird (String color,

 String food)

 { super (color, food, "flying"); }

}

Values passed to Bird class constructor where used

to initialize attribute variables defined in class Bird

Subclasses

// Parrot provides subclass of FlyingBird

class Parrot extends FlyingBird

{

 public Parrot(String color)

 { super(color, "fruit"); }

 public String getCall()

 { return "Squawk!"; }

}

Note "is a" relationship: a

parrot is a flying bird.

Similarly, a Parrot is a Bird

Movement attribute not an

argument for constructor, a parrot is

already specified as a flying bird

Aviary Class

• Note source code, Figure 11.1

– Array of Bird objects

– Initialized as individual subclass objects
Ostrich, Goose, Parrot, etc.

• Random element of array chosen

– assigned to Bird handle, aBird

– when aBird printed, toString method prints
specifics unique to the subclass type of bird
chosen

11.2 Inheritance and Polymorphism

• Declaring subclasses
class B extends A

{ . . . }

– means class B is a
specialization of class A

– the "is a" relationship exists

– a B object is an A object

A

B

"is a"

increasingly

general

increasingly

specialized

Superclass

Subclass

Inheritance

• Other names:
– superclass also called "parent class"

– subclass also called "child class"

• These names help understand concept of
inheritance

• Child class inherits characteristics of parent
class
– attributes

– methods

Inheritance

• When we say …
class TalkingParrot extends Parrot

 { … }

– then a TalkingParrot object inherits all
Parrot attributes

– (which, in turn, inherits both FlyingBird
and Bird attributes)

• In general, descendant classes inherit the
attributes of ancestor classes

Results of Inheritance

• Used to eliminate redundant coding

• When we send toString() message to a
Goose or Parrot or TalkingParrot
object
– none of these classes implement the
toString() method

– but … they inherit it from Bird

–toString() need not be redefined in the
subclasses

Handles and
extends

• Consider the declaration:
Bird abird = new Goose();

– this is legal

– a Goose object "is a" Bird object

• Contrast
Goose aGoose = new Bird("gray",

"walking", "bugs");

– this is NOT legal

– A Bird object is not necessarily a Goose object

extends is unidirectional.

A extends B does NOT

imply that B extends A

Polymorphism

• Consider
 Bird bird1 = new Parrot("green"),

 bird2 = new TalkingParrot("red",phrases);

• A call to .getFood() uses the method from class Bird

• Contrast invocation of .getCall()
– uses methods specific to the classes Parrot and
TalkingParrot

• When a method is called

– system looks for local method of that name

– otherwise it looks for an inherited method

Polymorphism

• A method defined in a class is inherited by all descendants of
that class

• When a message is sent to an object to use method m(), any
messages that m() sends will also be sent to the same object

• If the object receiving a message does not have a definition of
the method requested, an inherited definition is invoked

• If the object receiving a message has a definition of the
requested method, that definition is invoked

Principles:

Java Hierarchy

• The classes we have been using throughout
the whole text are organized into a hierarchy

• Object is the common ancestor
– every class inherits characteristics of this class

– for example: clone(), equals(),
getClass() and toString()

• Every class must fit within the Java class
hierarchy

Object-Orient Design (OOD)

• Identify the problem's objects
– if an object cannot be represented by an existing type, design a class

to do so

– if two or more classes share common attributes, design a hierarchy

• Identify the operations
If an operation cannot be performed with an existing operator
or method
– define a method to do so

– store the method within a class hierarchy to enable inheritance

• Organize the objects and operations into an algorithm

O-O Design Issues

Using the extends relationship: A
class B should extend another
class A if and only if

• B "is a" specialized version of A
and …

• All messages that can be sent to A
can be appropriately sent to B

A

B

Abstract Methods and Classes

1. Define a "generic method" within the class
to provide a default behavior

• subclasses override it as necessary

2. Declare the method within the class as
abstract

• leave it up to the subclasses

Suppose we need to be able to send a message

to a class but there is no clear way to define the

corresponding method in that class.

Solutions:

Attribute Variables vs. Methods

• If an attribute value can be stored in a variable
and retrieved in a method …

• Do so in such a way as to exploit inheritance
and avoid redundant coding.

Should we represent a class attribute using

an attribute variable and accessor method

or only a method?

Principle:

Initializing Inherited Attributes

1. The super() method can only be invoked by
another constructor method

2. It must be the first statement in that method

– inherited attribute variables must be initialized before
any non inherited attribute variables

How can a child class constructor initialize the

attribute variables it inherits from its parent class …

it is not permitted to access directly the private

attribute variables ???

Rules for invoking a constructor in a parent class:

Accessing Private Information from an Ancestor
Class

• When the ancestor class declares an attribute
as private

– both users and descendents of the class are
prevented from accessing the attribute

• Java provides the protected modifier

– users of the class are prevented

– descendents of the class are allowed to access the
attribute

Invoking an Inherited Method
of the Same Name

• We know that an inherited method can be
overridden by another method of the same name

– most local (overriding) method takes precedence

• Occasionally we wish to call the inherited method

• If B extends A and both have a method m()

– The m() method for A can be called from inside B

– Use the syntax super.m()

11.3 Example: Geological Classification

• Problem: rocks classified according to nature
of origin

– Sedimentary

– Igneous

– Metamorphic

• We seek a program that given the name of a
rock, displays a simple geological classification

Objects

Object Type Kind Name

A rock Rock varying aRock

chalk Chalk constant

shale Shale constant

.

description String varying aRock.getDescription()

We need classes for

each kind of rock

Strategy

• Create a class for each kind of rock

• Note that classification is a characteristic of
rocks

– represent classification with a String attribute

– supply a getClassification() method

• Summarize relationships with class hierarchy
diagram

Rock Class Hierarchy

Basalt Granite Obsidian

Igneous Rock

Chalk . . .

Sedimentary Rock

Marble . . .

Metamorphic Rock

Rock

Operations

At the very least, each class should have:

• A constructor

• Accessor methods for class attributes

• A toString() method to facilitate output

Also:

• getDescription() method in each class

• Attribute variable and accessor for which of the
three categories

Coding

• Class declarations, Figures 11.12 through
11.16

• Algorithm
1. Prompt user for name of rock

2. Read name into rockString

3. Build instance of class whose name is stored in
rockString

4. Display result of sending that object the
getDescription() message

Coding

• Note the program did not use if-else-if to
determine which class to use based on input

• Instead it used Class class
aclass = (Rock)

 Class.forName(rockString).newInstance();

Main program, Figure 11.1

creates an actual instance of the

class and reference to it rockString passed to
forName() method

returns a Class object

representing that class
this class object sent to

newInstance() method

must be cast into our
handle's type, Rock

Constructing an Object from a String

• Returns instance of class whose name stored in
StringVariable

• Created using default constructor of that class
• newInstance returns that instance as an Object
• It must be cast into appropriate type (usually nearest

ancestor)

Form:
 class.forName(StringVariable).newInstance()

Where:
StringVariable refers to a String containing
the name of a class

Purpose:

11.4 Example: An O-O Payroll Program

• Consider a program to generate monthly
paychecks for employees.

• Includes different kinds of workers, paid
different ways

– managers & programmers, salary

– secretaries & consultants, hourly

• Program should read sequence of employees
from file, compute pay, print paycheck

Objects

Object Type Kind Name

program PayrollGenerator

Employee seq Employee[] varying employee

Input file

BufferedReader(

FileReader(

 fileName))

varying empFile

File name String varying args[0]

Employee Employee varying employee[i]

Managers Manager varying

.

Pay double varying employee[i].pay()

Paycheck Paycheck varying paycheck

Emp. name String varying employee[i].name()

Analysis

• Common attributes

– salary for managers, programmers

– hours and hourly wage for secretaries and
consultants

– name, id, pay, etc. for all employees

• Suggests superclass of Employee, subclasses
of:

Salaried employee

manager

programmer

Hourly employee
Consultant

secretary

Hierarchy

Payroll

Generator

Manager Programmer

Salaried

Employee

Consultant Secretary

Hourly

Employee

Employee Paycheck

Object

Operations

Operation Responsibility of:

1. Read sequence of employees

from file (open file, read, close)

PayrollGenerator,

Employee subclasses

2. Compute an employee's pay Employee

3. Construct paycheck Paycheck

4. Access employee name Employee

5. Access ID number Employee

6. Access employee pay Employee subclasses

File Format

• First line contains number of employees to be
read from file

• Subsequent lines contain info in employee
records

– note that different kinds of records contain
different kinds of attributes

• salaried employee records have salary

• hourly employee records have both hours and wages

Algorithm

1. Read the sequence of employee records
from input file into employee array

2. For each index i of employee
a) build a paycheck for employee[i]
b) output that paycheck

• Note class declarations, Figures 11.18
through 11.23, PayrollGenerator program,
Figure 11.23

Program Expansion

• If company hires an employee of a new type
(say janitor)

– build a Janitor class that extends
SalariedEmployee or HourlyEmployee

– Add the janitor data to the file

• Note the simplicity of the expansion

– no other modifications necessary to the program

11.5 Graphical/Internet Java:
A Function Plotter

• We seek a program for use in a mathematics
class
– plots the graph of a function

– helps visualize function behavior

• Program allows user to:
– choose a function to be plotted

– specify range of values

• Program should be easily expandable for
including new functions

Behavior

Function Plotter

Function X max 4.0 Y max 4.0

X min 4.0 Y min 4.0 Colors

(Clear)

Function chosen will be

graphed on the axes

Sine

Cosine

Log10

 Power

Hierarchies

• FunctionPanel will extend
CartesianPanel

• CartesianPanel already extends JPanel

• Make the functions we will graph to be
objects

– build a class to represent each

– this makes future expansion easily done

– take advantage of polymorphism

Polymorphism

• Each function class has a polymorphic
valueAt() method

– given an x-value, returns corresponding y-value
for that function

Function myFunction =

(Function)Class.forName

 (functionName).newInstance();

 . . .

y = myFunction.valueAt(x);

Coding

• Parent class Function, source code Figure
11.25

• Subclasses for different functions, source code
Figures 11.26 through 11.29

• Class ColoredFunction, source code
Figure 11.30

– uses a wrapper class that encapsulates
Function and Color into a single class

FunctionPanel Class

• Its only attribute variable is the Function it
draws (see Figure 11.31)

• Methods

– constructor

– accessor

– mutator

– clear() to erase function

– the paintComponent() to draw the function

The actionPerformed() Method

• JButton, JComboBox, etc are components
that fire ActionEvents

– must implement ActionListener interface

– also define actionPerformed() method

• Use instanceof operator

– determines which action user performed

• Figure 11.33 shows coding

