
Polymorphism

2

Signatures

 In any programming language, a signature is what
distinguishes one function or method from another

 In C, every function has to have a different name

 In Java, two methods have to differ in their names
or in the number or types of their parameters

 foo(int i) and foo(int i, int j) are different

 foo(int i) and foo(int k) are the same

 foo(int i, double d) and foo(double d, int i) are
different

 In C++, the signature also includes the return type

 But not in Java!

3

Polymorphism

 Polymorphism means many (poly) shapes (morph)

 In Java, polymorphism refers to the fact that you can

have multiple methods with the same name in the same

class

 There are two kinds of polymorphism:

 Overloading

 Two or more methods with different signatures

 Overriding

 Replacing an inherited method with another having the same signature

4

Overloading

class Test {

 public static void main(String args[]) {

 myPrint(5);

 myPrint(5.0);

 }

 static void myPrint(int i) {

 System.out.println("int i = " + i);

 }

 static void myPrint(double d) { // same name, different parameters

 System.out.println("double d = " + d);

 }

}

int i = 5

double d = 5.0

5

Why overload a method?

 So you can use the same names for methods that do essentially the same thing

 Example: println(int), println(double), println(boolean), println(String), etc.

 So you can supply defaults for the parameters:

 int increment(int amount) {
 count = count + amount;
 return count;
}

 int increment() {
 return increment(1);
}

 Notice that one method can call another of the same name

 So you can supply additional information:

 void printResults() {
 System.out.println("total = " + total + ", average = " + average);
}

 void printResult(String message) {
 System.out.println(message + ": ");
 printResults();
}

6

DRY (Don’t Repeat Yourself)

 When you overload a method with another, very similar method,
only one of them should do most of the work:

 void debug() {
 System.out.println("first = " + first + ", last = " + last);
 for (int i = first; i <= last; i++) {
 System.out.print(dictionary[i] + " ");
 }
 System.out.println();
}

void debug(String s) {
 System.out.println("At checkpoint " + s + ":");
 debug();
}

7

Another reason to overload methods

 You may want to do “the same thing” with different kinds of
data:

 class Student extends Person {
 ...
 void printInformation() {
 printPersonalInformation();
 printGrades();
 }
}

 class Professor extends Person() {
 ...
 void printInformation() {
 printPersonalInformation();
 printResearchInterests();
 }
}

 Java’s print and println methods are heavily overloaded

8

Legal assignments

 Widening is legal

 Narrowing is illegal (unless you cast)

class Test {

 public static void main(String args[]) {

 double d;

 int i;

 d = 5; // legal

 i = 3.5; // illegal

 i = (int) 3.5; // legal

 }

}

9

Legal method calls

 Legal because parameter transmission is equivalent to
assignment

 myPrint(5) is like double d = 5; System.out.println(d);

class Test {

 public static void main(String args[]) {

 myPrint(5);

 }

 static void myPrint(double d) {

 System.out.println(d);

 }

}

5.0

10

Illegal method calls

 Illegal because parameter transmission is equivalent to
assignment

 myPrint(5.0) is like int i = 5.0; System.out.println(i);

class Test {

 public static void main(String args[]) {

 myPrint(5.0);

 }

 static void myPrint(int i) {

 System.out.println(i);

 }

}

myPrint(int) in Test cannot be applied to (double)

11

Java uses the most specific method

 class Test {
 public static void main(String args[]) {
 myPrint(5);
 myPrint(5.0);
 }

 static void myPrint(double d) {
 System.out.println("double: " + d);
 }

 static void myPrint(int i) {
 System.out.println("int: " + i);
 }
}

 int:5
double: 5.0

12

Multiple constructors I

 You can “overload” constructors as well as methods:

 Counter() {

 count = 0;

}

Counter(int start) {

 count = start;

}

13

Multiple constructors II

 One constructor can “call” another constructor in the
same class, but there are special rules

 You call the other constructor with the keyword this

 The call must be the very first thing the constructor does

 Point(int x, int y) {
 this.x = x;
 this.y = y;
 sum = x + y;
}

 Point() {
 this(0, 0);
}

 A common reason for overloading constructors is (as above)
to provide default values for missing parameters

14

Superclass construction I

 The very first thing any constructor does, automatically, is call

the default constructor for its superclass

 class Foo extends Bar {

 Foo() { // constructor

 super(); // invisible call to superclass constructor

 ...

 You can replace this with a call to a specific superclass

constructor

 Use the keyword super

 This must be the very first thing the constructor does

 class Foo extends Bar {

 Foo(String name) { // constructor

 super(name, 5); // explicit call to superclass constructor

 ...

15

Superclass construction II

 Unless you specify otherwise, every constructor calls the default constructor
for its superclass

 class Foo extends Bar {
 Foo() { // constructor
 super(); // invisible call to superclass constructor
 ...

 You can use this(...) to call another constructor in the same class:

 class Foo extends Bar {
 Foo(String message) { // constructor
 this(message, 0, 0); // your explicit call to another constructor
 ...

 You can use super(...) to call a specific superclass constructor

 class Foo extends Bar {
 Foo(String name) { // constructor
 super(name, 5); // your explicit call to some superclass constructor
 ...

 Since the call to another constructor must be the very first thing you do in the
constructor, you can only do one of the above

16

Shadowing

 This is called shadowing—name in class Dog shadows

name in class Animal

class Animal {

 String name = "Animal";

 public static void main(String args[]) {

 Animal animal = new Animal();

 Dog dog = new Dog();

 System.out.println(animal.name + " " + dog.name);

 }

}

public class Dog extends Animal {

 String name = "Dog";

}

Animal Dog

An aside: Namespaces

 In Python, if you named a variable list, you could no longer use

the list() method

 This sort of problem is very rare in Java

 Java figures out what kind of thing a name refers to, and puts it in

one of six different namespaces:

 package names

 type names

 field names

 method names

 local variable names (including parameters)

 labels

 This is a separate issue from overloading, overriding, or

shadowing

 17

18

Overriding

 This is called

overriding a method

 Method print in Dog

overrides method

print in Animal

 A subclass variable

can shadow a

superclass variable,

but a subclass method

can override a

superclass method

class Animal {

 public static void main(String args[]) {

 Animal animal = new Animal();

 Dog dog = new Dog();

 animal.print();

 dog.print();

 }

 void print() {

 System.out.println("Superclass Animal");

 }

}

public class Dog extends Animal {

 void print() {

 System.out.println("Subclass Dog");

 }

}

Superclass Animal

Subclass Dog

19

How to override a method

 Create a method in a subclass having the same signature

as a method in a superclass

 That is, create a method in a subclass having the same

name and the same number and types of parameters

 Parameter names don’t matter, just their types

 Restrictions:

 The return type must be the same

 The overriding method cannot be more private than the

method it overrides

20

Why override a method?

 Dog dog = new Dog();
System.out.println(dog);
 Prints something like Dog@feda4c00

 The println method calls the toString method, which is
defined in Java’s top-level Object class

 Hence, every object can be printed (though it might not look pretty)

 Java’s method public String toString() can be overridden

 If you add to class Dog the following:

 public String toString() {
 return name;
}

 Then System.out.println(dog); will print the dog’s
name, which may be something like: Fido

21

More about toString()

 It is almost always a good idea to override

public String toString()

to return something “meaningful” about the object

 When debugging, it helps to be able to print objects

 When you print objects with System.out.print or System.out.println,

they automatically call the objects toString() method

 When you concatenate an object with a string, the object’s toString()

method is automatically called

 You can explicitly call an object’s toString() method

 This is sometimes helpful in writing unit tests; however...

 Since toString() is used for printing, it’s something you want to be able to

change easily (without breaking your test methods)

 It’s usually better to write a separate method, similar to toString(), to use in

your JUnit tests

22

Equality

 Consider these two assignments:

 Thing thing1 = new Thing();

 Thing thing2 = new Thing();

 Are these two “Things” equal?

 That’s up to the programmer!

 But consider:

 Thing thing3 = new Thing();

 Thing thing4 = thing3;

 Are these two “Things” equal?

 Yes, because they are the same Thing!

23

The equals method

 Primitives can always be tested for equality with ==

 For objects, == tests whether the two are the same object

 Two strings "abc" and "abc" may or may not be == !

 Objects can be tested with the method
 public boolean equals(Object o)
in java.lang.

 Unless overridden, this method just uses ==

 It is overridden in the class String

 It is not overridden for arrays; == tests if its operands are the same array

 Morals:

 Never use == to test equality of Strings or arrays or other objects

 Use equals for Strings, java. util.Arrays.equals(a1, a2) for arrays

 If you test your own objects for equality, override equals

24

Calling an overridden method

 When your class overrides an inherited method, it
basically “hides” the inherited method

 Within this class (but not from a different class), you
can still call the overridden method, by prefixing the
call with super.
 Example: super.printEverything();

 You would most likely do this in order to observe the
DRY principle

 The superclass method will do most of the work, but you add
to it or adjust its results

 This isn’t a call to a constructor, and can occur anywhere in
your class (it doesn’t have to be first)

25

Summary

 You should overload a method when you want to do
essentially the same thing, but with different parameters

 You should override an inherited method if you want to
do something slightly different than in the superclass

 It’s almost always a good idea to override public void
toString() -- it’s handy for debugging, and for many other
reasons

 To test your own objects for equality, override public void
equals(Object o)

 There are special methods (in java.util.Arrays) that you can
use for testing array equality

 You should never intentionally shadow a variable

