
Polymorphism

2

Signatures

 In any programming language, a signature is what
distinguishes one function or method from another

 In C, every function has to have a different name

 In Java, two methods have to differ in their names
or in the number or types of their parameters

 foo(int i) and foo(int i, int j) are different

 foo(int i) and foo(int k) are the same

 foo(int i, double d) and foo(double d, int i) are
different

 In C++, the signature also includes the return type

 But not in Java!

3

Polymorphism

 Polymorphism means many (poly) shapes (morph)

 In Java, polymorphism refers to the fact that you can

have multiple methods with the same name in the same

class

 There are two kinds of polymorphism:

 Overloading

 Two or more methods with different signatures

 Overriding

 Replacing an inherited method with another having the same signature

4

Overloading

class Test {

 public static void main(String args[]) {

 myPrint(5);

 myPrint(5.0);

 }

 static void myPrint(int i) {

 System.out.println("int i = " + i);

 }

 static void myPrint(double d) { // same name, different parameters

 System.out.println("double d = " + d);

 }

}

int i = 5

double d = 5.0

5

Why overload a method?

 So you can use the same names for methods that do essentially the same thing

 Example: println(int), println(double), println(boolean), println(String), etc.

 So you can supply defaults for the parameters:

 int increment(int amount) {
 count = count + amount;
 return count;
}

 int increment() {
 return increment(1);
}

 Notice that one method can call another of the same name

 So you can supply additional information:

 void printResults() {
 System.out.println("total = " + total + ", average = " + average);
}

 void printResult(String message) {
 System.out.println(message + ": ");
 printResults();
}

6

DRY (Don’t Repeat Yourself)

 When you overload a method with another, very similar method,
only one of them should do most of the work:

 void debug() {
 System.out.println("first = " + first + ", last = " + last);
 for (int i = first; i <= last; i++) {
 System.out.print(dictionary[i] + " ");
 }
 System.out.println();
}

void debug(String s) {
 System.out.println("At checkpoint " + s + ":");
 debug();
}

7

Another reason to overload methods

 You may want to do “the same thing” with different kinds of
data:

 class Student extends Person {
 ...
 void printInformation() {
 printPersonalInformation();
 printGrades();
 }
}

 class Professor extends Person() {
 ...
 void printInformation() {
 printPersonalInformation();
 printResearchInterests();
 }
}

 Java’s print and println methods are heavily overloaded

8

Legal assignments

 Widening is legal

 Narrowing is illegal (unless you cast)

class Test {

 public static void main(String args[]) {

 double d;

 int i;

 d = 5; // legal

 i = 3.5; // illegal

 i = (int) 3.5; // legal

 }

}

9

Legal method calls

 Legal because parameter transmission is equivalent to
assignment

 myPrint(5) is like double d = 5; System.out.println(d);

class Test {

 public static void main(String args[]) {

 myPrint(5);

 }

 static void myPrint(double d) {

 System.out.println(d);

 }

}

5.0

10

Illegal method calls

 Illegal because parameter transmission is equivalent to
assignment

 myPrint(5.0) is like int i = 5.0; System.out.println(i);

class Test {

 public static void main(String args[]) {

 myPrint(5.0);

 }

 static void myPrint(int i) {

 System.out.println(i);

 }

}

myPrint(int) in Test cannot be applied to (double)

11

Java uses the most specific method

 class Test {
 public static void main(String args[]) {
 myPrint(5);
 myPrint(5.0);
 }

 static void myPrint(double d) {
 System.out.println("double: " + d);
 }

 static void myPrint(int i) {
 System.out.println("int: " + i);
 }
}

 int:5
double: 5.0

12

Multiple constructors I

 You can “overload” constructors as well as methods:

 Counter() {

 count = 0;

}

Counter(int start) {

 count = start;

}

13

Multiple constructors II

 One constructor can “call” another constructor in the
same class, but there are special rules

 You call the other constructor with the keyword this

 The call must be the very first thing the constructor does

 Point(int x, int y) {
 this.x = x;
 this.y = y;
 sum = x + y;
}

 Point() {
 this(0, 0);
}

 A common reason for overloading constructors is (as above)
to provide default values for missing parameters

14

Superclass construction I

 The very first thing any constructor does, automatically, is call

the default constructor for its superclass

 class Foo extends Bar {

 Foo() { // constructor

 super(); // invisible call to superclass constructor

 ...

 You can replace this with a call to a specific superclass

constructor

 Use the keyword super

 This must be the very first thing the constructor does

 class Foo extends Bar {

 Foo(String name) { // constructor

 super(name, 5); // explicit call to superclass constructor

 ...

15

Superclass construction II

 Unless you specify otherwise, every constructor calls the default constructor
for its superclass

 class Foo extends Bar {
 Foo() { // constructor
 super(); // invisible call to superclass constructor
 ...

 You can use this(...) to call another constructor in the same class:

 class Foo extends Bar {
 Foo(String message) { // constructor
 this(message, 0, 0); // your explicit call to another constructor
 ...

 You can use super(...) to call a specific superclass constructor

 class Foo extends Bar {
 Foo(String name) { // constructor
 super(name, 5); // your explicit call to some superclass constructor
 ...

 Since the call to another constructor must be the very first thing you do in the
constructor, you can only do one of the above

16

Shadowing

 This is called shadowing—name in class Dog shadows

name in class Animal

class Animal {

 String name = "Animal";

 public static void main(String args[]) {

 Animal animal = new Animal();

 Dog dog = new Dog();

 System.out.println(animal.name + " " + dog.name);

 }

}

public class Dog extends Animal {

 String name = "Dog";

}

Animal Dog

An aside: Namespaces

 In Python, if you named a variable list, you could no longer use

the list() method

 This sort of problem is very rare in Java

 Java figures out what kind of thing a name refers to, and puts it in

one of six different namespaces:

 package names

 type names

 field names

 method names

 local variable names (including parameters)

 labels

 This is a separate issue from overloading, overriding, or

shadowing

 17

18

Overriding

 This is called

overriding a method

 Method print in Dog

overrides method

print in Animal

 A subclass variable

can shadow a

superclass variable,

but a subclass method

can override a

superclass method

class Animal {

 public static void main(String args[]) {

 Animal animal = new Animal();

 Dog dog = new Dog();

 animal.print();

 dog.print();

 }

 void print() {

 System.out.println("Superclass Animal");

 }

}

public class Dog extends Animal {

 void print() {

 System.out.println("Subclass Dog");

 }

}

Superclass Animal

Subclass Dog

19

How to override a method

 Create a method in a subclass having the same signature

as a method in a superclass

 That is, create a method in a subclass having the same

name and the same number and types of parameters

 Parameter names don’t matter, just their types

 Restrictions:

 The return type must be the same

 The overriding method cannot be more private than the

method it overrides

20

Why override a method?

 Dog dog = new Dog();
System.out.println(dog);
 Prints something like Dog@feda4c00

 The println method calls the toString method, which is
defined in Java’s top-level Object class

 Hence, every object can be printed (though it might not look pretty)

 Java’s method public String toString() can be overridden

 If you add to class Dog the following:

 public String toString() {
 return name;
}

 Then System.out.println(dog); will print the dog’s
name, which may be something like: Fido

21

More about toString()

 It is almost always a good idea to override

public String toString()

to return something “meaningful” about the object

 When debugging, it helps to be able to print objects

 When you print objects with System.out.print or System.out.println,

they automatically call the objects toString() method

 When you concatenate an object with a string, the object’s toString()

method is automatically called

 You can explicitly call an object’s toString() method

 This is sometimes helpful in writing unit tests; however...

 Since toString() is used for printing, it’s something you want to be able to

change easily (without breaking your test methods)

 It’s usually better to write a separate method, similar to toString(), to use in

your JUnit tests

22

Equality

 Consider these two assignments:

 Thing thing1 = new Thing();

 Thing thing2 = new Thing();

 Are these two “Things” equal?

 That’s up to the programmer!

 But consider:

 Thing thing3 = new Thing();

 Thing thing4 = thing3;

 Are these two “Things” equal?

 Yes, because they are the same Thing!

23

The equals method

 Primitives can always be tested for equality with ==

 For objects, == tests whether the two are the same object

 Two strings "abc" and "abc" may or may not be == !

 Objects can be tested with the method
 public boolean equals(Object o)
in java.lang.

 Unless overridden, this method just uses ==

 It is overridden in the class String

 It is not overridden for arrays; == tests if its operands are the same array

 Morals:

 Never use == to test equality of Strings or arrays or other objects

 Use equals for Strings, java. util.Arrays.equals(a1, a2) for arrays

 If you test your own objects for equality, override equals

24

Calling an overridden method

 When your class overrides an inherited method, it
basically “hides” the inherited method

 Within this class (but not from a different class), you
can still call the overridden method, by prefixing the
call with super.
 Example: super.printEverything();

 You would most likely do this in order to observe the
DRY principle

 The superclass method will do most of the work, but you add
to it or adjust its results

 This isn’t a call to a constructor, and can occur anywhere in
your class (it doesn’t have to be first)

25

Summary

 You should overload a method when you want to do
essentially the same thing, but with different parameters

 You should override an inherited method if you want to
do something slightly different than in the superclass

 It’s almost always a good idea to override public void
toString() -- it’s handy for debugging, and for many other
reasons

 To test your own objects for equality, override public void
equals(Object o)

 There are special methods (in java.util.Arrays) that you can
use for testing array equality

 You should never intentionally shadow a variable

