

Programming Paradigms

1

Programming Paradigm

 A way of conceptualizing what it means to
perform computation and how tasks to be
carried out on the computer should be
structured and organized.

• Imperative : Machine-model based

• Functional : Equations; Expression Evaluation

• Logical : First-order Logic Deduction

• Object-Oriented : Programming with Data Types

2

Imperative vs Non-Imperative

• Functional/Logic programs specify WHAT is to
be computed abstractly, leaving the details of
data organization and instruction sequencing
to the interpreter.

•• In constrast, In constrast, Imperative programsImperative programs describedescribe

 the details of the details of HOWHOW the results are to be the results are to be
obtained, in terms of the underlying machine obtained, in terms of the underlying machine
model.model.

3

Illustrative Example

• Expression (to be computed) : a + b + c

• Recipe for Computation:

–– Intermediate Code Intermediate Code

• T := a + b; T := T + c;

–– Accumulator MachineAccumulator Machine

• Load a; Add b; Add c

–– Stack MachineStack Machine

• Push a; Push b; Add; Push c; Add

4

Imperative vs Non-Imperative

• Functional/Logic style clearly separates WHAT
aspects of a program (programmers’
responsibility) from the HOW aspects
(implementation decisions).

•• An An Imperative programImperative program contains both the contains both the
specification and the implementation details, specification and the implementation details,
inseparably interinseparably inter--twined.twined.

5

Procedural vs Functional

• Program: a sequence of
instructions for a von
Neumann m/c.

• Computation by
instruction execution.

• Iteration.

• Modifiable or
updateable variables.

• Program: a collection of
function definitions
(m/c independent).

• Computation by term
rewriting.

• Recursion.

• Assign-only-once
variables.

6

Functional Style : Illustration

• Definition : Equations

 sum(0) = 0

 sum(n) = n + sum(n-1)

• Computation : Substituition and Replacement

 sum(2)

 = 2 + sum (2-1)

 = …

 = 3

7

Paradigm vs Language

•• Imperative StyleImperative Style

 i := 0; sum := 0;

 while (i < n) do

 i := i + 1;

 sum := sum + i

 end;

– Storage efficient

•• Functional StyleFunctional Style

 func sum(i:int) : int;

 if i = 0

 then 0

 else i + sum(i-1)

 end;

– No Side-effect

8

Role of Variables

•• Imperative (read/write)Imperative (read/write)
 i 0 1 2 3 ...
sum 0 1 3 6 ...
•• Functional (read only)Functional (read only)
 i1 sum1i1 sum1
 i2 sum2i2 sum2
 i3 sum3i3 sum3

9

3

2

1

6

3

1

Bridging the Gap

• Tail recursive programs can be auomatically
optimized for space by translating them into
equivalent while-loops.

 funcfunc sum(sum(ii : : intint, r : , r : intint) :) : intint;;

 if if ii = 0 then r= 0 then r

 else sum(ielse sum(i--1, 1, n+rn+r))

 endend

– Scheme does not have loops.

10

Analogy: Styles vs Formalisms

• Iteration

• Tail-Recursion

• General Recursion

• Regular Expression

• Regular Grammar

• Context-free Grammar

11

Logic Programming Paradigm

• Integrates Data and Control Structures

 edge(a,b).

 edge(a,c).

 edge(c,a).

 path(X,X).

 path(X,Y) :- edge(X,Y).

 path(X,Y) :- edge(X,Z), path(Z,Y).

12

Declarative Programming

• A logic program defines a set of relations.

 This “knowledge” can be used in various ways
by the interpreter to solve different queries.

•• In contrast, the programs in other languagesIn contrast, the programs in other languages

 make explicit make explicit HOWHOW the “declarative the “declarative
knowledge” is used to solve the query.knowledge” is used to solve the query.

13

 AppendAppend in Prolog

 append([], L, L).append([], L, L).

 append([H | T], L, [H | R]) :append([H | T], L, [H | R]) :--

 append(T, L, R).append(T, L, R).

• True statements about appendappend relation.
• “.” and “:-” are logical connectives that stand for

“and” and “if” respectively.

• Uses pattern matching.
• “[]” and “|” stand for empty list and cons operation.

14

Different Kinds of Queries

• Verification

– sig: list x list x list

• append([1], [2,3], [1,2,3]).

• Concatenation

– sig: list x list -> list

• append([1], [2,3], R).

15

More Queries

• Constraint solving

– sig: list x list -> list

• append(R, [2,3], [1,2,3]).

– sig: list -> list x list

• append(A, B, [1,2,3]).

• Generation

– sig: -> list x list x list

• append(X, Y, Z).

16

17

expressiveness
mechanization

Logic Programming Paradigm

Knowledge
Representation

Knowledge
Representation

Theorem

Theorem
Proving

Attribute Grammars

Attribute Grammars
/ Compilers (DCGs)

Relational
Databases
Relational
Databases

Programming Programming
Languages

Problem Solving in AI

(ii) Divide and Conquer

Problem Solving in AI
(i) Search

(ii) Divide and Conquer

unification

declarativeness

efficiency

Trading expressiveness for efficiency :
Executable specification

Object-Oriented Style

• Programming with Abstract Data Types

– ADTs specify/describe behaviors.ADTs specify/describe behaviors.

• Basic Program Unit: Class

–– Implementation of an ADT.Implementation of an ADT.

• Abstraction enforced by encapsulation.

• Basic Run-time Unit: Object

– Instance of a class.Instance of a class.

• Has an associated state.

18

Procedural vs Object-Oriented

• Emphasis on procedural
abstraction.

• Top-down design;

 Step-wise refinement.

• Suited for programming
in the small.

• Emphasis on data
abstraction.

• Bottom-up design;

 Reusable libraries.

• Suited for programming
in the large.

19

Integrating Heterogeneous Data

• In C, Pascal, etc., use

 Union Type / Switch Statement

 Variant Record Type / Case Statement

• In C++, Java, Eiffel, etc., use

 Abstract Classes / Virtual Functions

 Interfaces and Classes / Dynamic Binding

20

Comparison : Figures example

• Data

– Square
• side

– Circle
• radius

• Operation (area)

– Square
• side * side

– Circle
• PI * radius * radius

• Classes

– Square
• side

• area

 (= side * side)

• Circle

– radius

– area

 (= PI*radius*radius)

21

Adding a new operation

• Data

 ...

• Operation (area)

• Operation (perimeter)

– Square
• 4 * side

– Circle
• 2 * PI * radius

• Classes

– Square
• ...

• perimeter

 (= 4 * side)

– Circle
• ...

• perimeter

 (= 2 * PI * radius)

22

Adding a new data representation

• Data

– ...

– rectangle
• length

• width

• Operation (area)

– ...

– rectangle
• length * width

• Classes

– ...

– rectangle
• length

• width

• area

 (= length * width)

23

Procedural vs Object-Oriented

• New operations cause additive changes in
procedural style, but require modifications to
all existing “class modules” in object-oriented
style.

•• New data representations cause New data representations cause additive additive
changes in objectchanges in object--oriented style, but require oriented style, but require
modifications to all “procedure modules”.modifications to all “procedure modules”.

24

Object-Oriented Concepts

• Data Abstraction (specifies behavior)

• Encapsulation (controls visibility of names)

• Polymorphism (accommodates various
 implementations)

• Inheritance (facilitates code reuse)

• Modularity (relates to unit of compilation)

25

Example : Role of interface in decoupling

 Client

• Determine the number of elements in a collection.

 Suppliers

• Collections : Vector, String, List, Set, Array, etc

Procedual Style

• A client is responsible for invoking appropriate
supplier function for determining the size.

OOP Style

• Suppliers are responsible for conforming to the
standard interface required for exporting the size
functionality to a client.

26

Client in Scheme

(define (size C)

 (cond

 ((vector? C) (vector-length C))

 ((pair? C) (length C))

 ((string? C) (string-length C))

 (else “size not supported”))

))

(size (vector 1 2 (+ 1 2)))

(size ‘(one “two” 3))

27

Suppliers and Client in Java

interface Collection { int size(); }
class myVector extends Vector
 implements Collection {
}
class myString extends String
 implements Collection {
 public int size() { return length();}
}
class myArray implements Collection {
 int[] array;
 public int size() {return array.length;}
}

Collection c = new myVector(); c.size();

28

