

Computer Languages, Algorithms

and Program Development

Computer Languages, Algorithms
and Program Development

• In this chapter:

– What makes up a language and how do we use
language to communicate with each other and with
computers?

– How did computer programming languages evolve?

– How do computers understand what we are telling
them to do?

– What are the steps involved in building a program?

– How can we create something that would be visible
on the WWW?

Communicating with
a Computer

• Communication cycle

– One complete unit of communication.

• An idea to be sent.

• An encoder.

• A sender.

• A medium.

• A receiver.

• A decoder.

• A response.

Speaker encodes

information
Listener decodes

information

Listener returns

feedback to speaker

Communicating with
a Computer

• Substituting a
computer for one
of the people in
the
communication
process.
– Process is basically
 the same.

• Response may be
symbols on the
monitor.

User encodes

information Computer decodes

information

Computer

returns results

to user

Communicating with
a Computer

• Between two people:

– The person can’t hear you.

– The phone connection is
broken in mid-call.

– One person speaks only
French, while the other only
Japanese.

• Between a person and a
computer:

– The power was suddenly
interrupted.

– An internal wire became
disconnected.

– A keyboard malfunctioned.

A breakdown can occur any place along the cycle...

When communicating instructions to a computer, areas

of difficulty are often part of the encoding and decoding

process.

Communicating with
a Computer

• Programming languages bridge the gap between
human thought processes and computer binary
circuitry.

– Programming language: A series of specifically
defined commands designed by human programmers
to give directions to digital computers.

• Commands are written as sets of instructions, called
programs.

• All programming language instructions must be expressed in
binary code before the computer can perform them.

The Role of Languages
in Communication

• Three fundamental elements of language that
contribute to the success or failure of the
communication cycle:

– Semantics

– Syntax

– Participants

The Role of Languages
in Communication

• Human language:

– Refers to the meaning of
what is being said.

– Words often pick up
multiple meanings.

– Phrases sometimes have
idiomatic meanings:

• let sleeping dogs lie

 (don’t aggravate the
situation by “putting in
your two cents”)

• Computer language:

– Refers to the specific
command you wish the
computer to perform.

• Input, Output, Print

• Each command has a
very specific meaning.

• Computers associate
one meaning with one
computer command.

 Semantics: Refers to meaning.

The Role of Languages
in Communication

• Human language:
– Refers to rules governing

grammatical structure.

• Pluralization, tense,
agreement of subject
and verb, pronunciation,
and gender.

– Humans tolerate the use of
language.

• How many ways can you
say no? Do they have
the same meaning?

• Computer language:
– Refers to rules governing

exact spelling and
punctuation, plus:

• Formatting, repetition,
subdivision of tasks,
identification of
variables, definition of
memory spaces.

– Computers do not tolerate
syntax errors.

 Syntax: Refers to form, or structure.

The Role of Languages
in Communication

• Human language:
– In the communication cycle,

humans can respond in more
than one way.
• Body language
• Facial expressions
• Laughter
• human speech

• Computer language:
– People use programming

languages.
– Programs must be translated

into binary code.
– Computers respond by

performing the task or not!

 Participants:

• Human languages are used by people to communicate with

each other.

• Programming languages are used by people to communicate

with machines.

The Programming
Language Continuum

• In the Beginning...Early computers consisted
of special-purpose computing hardware.

– Each computer was designed to perform a
particular arithmetic task or set of tasks.

– Skilled engineers had to manipulate parts of the
computer’s hardware directly.
• Some computers required “fat-fingering”.

– Fat-fingering: Engineer needed to position electrical relay switches
manually.

• Others required programs to be hardwired.

– Hardwiring: Using solder to create circuit boards with connections
needed to perform a specific task.

The Programming
Language Continuum

• ENIAC
– Used programs to

complete a number of
different mathematical
tasks.
• Programs were entered by

plugging connector cables
directly into sockets on a
plug-in board.

– Set-up could take hours.

– A program would
generally be used for
weeks at a time.

The Programming
Language Continuum

• In the beginning… To use a computer, you needed to know how to
program it.

• Today… People no longer need to know how to program in order to use
the computer.

• To see how this was accomplished, lets investigate how programming
languages evolved.

– First Generation - Machine Language (code)

– Second Generation - Assembly Language

– Third Generation - People-Oriented Programming Languages

– Fourth Generation - Non-Procedural Languages

– Fifth Generation - Natural Languages

The Programming
Language Continuum

• First Generation - Machine Language (code)

– Machine language programs were made up of
instructions written in binary code.

• This is the “native” language of the computer.

• Each instruction had two parts: Operation code,
Operand
– Operation code (Opcode): The command part of a computer

instruction.

– Operand: The address of a specific location in the computer’s
memory.

• Hardware dependent: Could be performed by only one
type of computer with a particular CPU.

The Programming
Language Continuum

• Second Generation - Assembly Language

– Assembly language programs are made up of
instructions written in mnemonics.

– Mnemonics: Uses convenient alphabetic abbreviations to
represent operation codes, and abstract symbols to represent
operands.

– Each instruction had two parts: Operation code, Operand

– Hardware dependent.

– Because programs are not written in 1s and 0s, the computer
must first translate the program before it can be executed.

READ num1

READ num2

LOAD num1

ADD num2

STORE sum

PRINT sum

STOP

The Programming
Language Continuum

• Third Generation - People-Oriented Programs

– Instructions in these languages are called
statements.

• High-level languages: Use statements that resemble
English phrases combined with mathematical terms
needed to express the problem or task being
programmed.

• Transportable: NOT-Hardware dependent.

• Because programs are not written in 1s and 0s, the
computer must first translate the program before it can
be executed.

The Programming
Language Continuum

• Pascal Example: Read in two numbers,
add them, and print them out.

Program sum2(input,output);

var

 num1,num2,sum : integer;

begin

 read(num1,num2);

 sum:=num1+num2;

 writeln(sum)

end.

The Programming
Language Continuum

• Fourth Generation - Non-Procedural
Languages

– Programming-like systems aimed at simplifying
the programmers task of imparting instructions to
a computer.

– Many are associated with specific application
packages.

• Query Languages:

• Report Writers:

• Application Generators:

The Programming
Language Continuum

– Query Languages:
• Enables a person to specify exactly what information they require

from the database.

• Usually embedded within database management programs.

– Report Writers:
• Takes information retrieved from databases and formats into

attractive, usable output.

– Application Generators:
• A person can specify a problem, and describe the desired results.

• Included with many micro-computer programs (macros).

The Programming
Language Continuum

• Fourth Generation - Non-Procedural Languages
(cont.)

– Object-Oriented Languages: A language that expresses a
computer problem as a series of objects a system contains,
the behaviors of those objects, and how the objects
interact with each other.
• Object: Any entity contained within a system.

– Examples:

» A window on your screen.

» A list of names you wish to organize.

» An entity that is made up of individual parts.

• Some popular examples: C++, Java, Smalltalk, Eiffel.

The Programming
Language Continuum

• Fifth Generation - Natural Languages

– Natural-Language: Languages that use ordinary
conversation in one’s own language.

• Research and experimentation toward this goal is being
done.
– Intelligent compilers are now being developed to translate

natural language (spoken) programs into structured machine-
coded instructions that can be executed by computers.

– Effortless, error-free natural language programs are still some
distance into the future.

Assembled, Compiled, or
Interpreted Languages

• All programs must be translated before their
instructions can be executed.

• Computer languages can be grouped
according to which translation process is used
to convert the instructions into binary code:

– Assemblers

– Interpreters

– Compilers

Assembled, Compiled, or
Interpreted Languages

• Assembled languages:

– Assembler: a program used to translate Assembly
language programs.

– Produces one line of binary code per original
program statement.

• The entire program is assembled before the program is
sent to the computer for execution.

Assembled, Compiled, or
Interpreted Languages

• Interpreted Languages:

– Interpreter: A program used to translate high-level
programs.

– Translates one line of the program into binary code at a
time:
• An instruction is fetched from the original source code.

• The Interpreter checks the single instruction for errors. (If an error
is found, translation and execution ceases. Otherwise…)

• The instruction is translated into binary code.

• The binary coded instruction is executed.

• The fetch and execute process repeats for the entire program.

Assembled, Compiled, or
Interpreted Languages

• Compiled languages:

– Compiler: a program used to translate high-level
programs.

– Translates the entire program into binary code
before anything is sent to the CPU for execution.

• The translation process for a compiled program:
– First, the Compiler checks the entire program for syntax errors in the

original source code.

– Next, it translates all of the instructions into binary code.

» Two versions of the same program exist: the original source code
version, and the binary code version (object code).

– Last, the CPU attempts execution only after the programmer requests
that the program be executed.

Programming for Everyone

• Several ways to control what your computer
does or the way it accomplishes a particular
task:

– Using Macros

– Using HTML to create Web Pages

– Scripting

• Each allows customization of current
applications.

Programming for Everyone

• Using Macros
– Macro: Set of operations within the computer application

that have been recorded for later execution.
• Once recorded, the macro can be used repeatedly on any

document within that application.

• In word processors, macros are commonly used to speed up
repetitive tasks.

– Example: SIG can be stored as a macro that includes a signature
message at the end of a document.

James R. Emmelsohn
Director of Public Relations,
Martin Electronics, Detroit Division

Programming for Everyone

• Using HTML to create Web Pages

– HTML (HyperText Markup Language): A computer
language consisting of special codes intended to
design the layout (or markup) of a Web page.

• Web browsers interpret the HTML code and display the
resulting Web pages.

• Web browser: A program that displays information
from the WWW.

• Each line of HTML is called a tag (formatting
instruction).

Programming for Everyone

<HTML>

<HEAD>

<TITLE> Title of Web Page </TITLE>

</HEAD>

<BODY bgcolor=#ffffff text=#000000 >

<BODY>

<H1>

<CENTER> Sample Web Page

</CENTER> </H1>

<HR>

dogpile search engine

</BODY>

</HTML>

• Designates an HTML document

• Beginning of Header section

• Contents of Title bar

• End of Header section

• Background=white, text=black

• Top of the body of the document

• H1=largest text size, H6 is smallest

• CENTER turns on centering

• Turns off centering and large text

• Displays a horizontal rule: thin line

• Links to the dogpile search engine

• </BODY> and </HTML>designate
the bottom of the document

Programming for Everyone

• Scripting

– Scripting: A series of commands, written to
accomplish some task.

• Very similar to the concept of a program.

• Extends the capabilities of the application where it is
being used.

• Examples of scripting languages:
– Perl, C++, VBScript, JavaScript

– JavaScript: A scripting language that allows the Web page
designer to add functional features to a formatted web page
created in HTML.

Building a Program

• Whatever type of problem needs to be solved, a careful thought out plan
of attack, called an algorithm, is needed before a computer solution can
be determined.

1) Developing the algorithm.

2) Writing the program.

3) Documenting the program.

4) Testing and debugging the program.

Building a Program

• 1) Developing the algorithm.

– Algorithm: A detailed description of the exact
methods used for solving a particular problem.

– To develop the algorithm, the programmer needs
to ask:

• What data has to be fed into the computer?

• What information do I want to get out of the
computer?

• Logic: Planning the processing of the program. It
contains the instructions that cause the input data to
be turned into the desired output data.

Building a Program

• A step-by-step program plan is created during the
planning stage.

• The three major notations for planning detailed
algorithms:

– Flowchart: Series of visual symbols representing the logical
flow of a program.

– Nassi-Schneidermann charts: Uses specific shapes and
symbols to represent different types of program
statements.

– Pseudocode: A verbal shorthand method that closely
resembles a programming language, but does not have to
follow a rigid syntax structure.

Building a Program

Start

Count Money

Do you

have more than

$10.00?

Go out

Go home

End

No

Yes

Repeat until

money < $10.00

Go out

If money > $10.00 Y N

Go home

1. If money < $10.00 then go home

 Else Go out

2. Count money

3. Go to number 1

Nassi-Schneidermann chart:

Pseudocode:

Flow chart:

Stop

Building a Program

• 2) Writing the Program

– If analysis and planning have been thoroughly
done, translating the plan into a programming
language should be a quick and easy task.

• 3) Documenting the Program

– During both the algorithm development and
program writing stages, explanations called
documentation are added to the code.

• Helps users as well as programmers understand the
exact processes to be performed.

Building a Program

• 4) Testing and Debugging the Program.

– The program must be free of syntax errors.

– The program must be free of logic errors.

– The program must be reliable. (produces correct results)

– The program must be robust. (able to detect execution
errors)

– Alpha testing: Testing within the company.

– Beta testing: Testing under a wider set of conditions using
“sophisticated” users from outside the company.

Software Development:
A Broader View

Type of program Number of Lines
The compiler for a language with a

 limited instruction set. Tens of thousands of lines

A full-featured word processor. Hundreds of thousands of lines

A microcomputer operating system. Approximately 2,000,000 lines

A military weapon management program.

 (controlling missiles, for example) Several million lines

Measures of effort spent on real-life programs:

Comparing programs by size:

Software Development:
A Broader View

• Measures of effort spent on real-life programs:

Comparing programs by time:

– Commercial software is seldom written by
individuals.

• Person-months - equivalent to one person working
forty hours a week for four weeks.

• Person-years - equivalent to one person working for
twelve months.

• Team of 5 working 40 hours for 8 weeks = ten person-
months.

Web Page Design Software:
Dreamweaver

• What is Web page design software?

– The programs that help create pages and their
associated HTML.

– Dreamweaver: A visual Web page editor primarily
for use by Web design professionals.

• Why is it needed?

– Allows creation of Web pages without knowledge
of HTML .

Web Page Design Software:
Dreamweaver

• What minimal functions must it have?

– WYSIWIG: “What you see is what you get.”

• Web page designers see exactly what it will look like.

– Allows selection of color scheme. (Background
and text)

– Allows text manipulation. (Typing text where you
want it, changing the size, color or style)

– Allows importation and layout of images.

Web Page Design Software:
Dreamweaver

• What types of support are available to enhance its
use?

– Applets extend the capabilities of HTML.
• Applet: A short application program, usually written in Java, which

adds enhancement and/or functionality to a Web page.

• Is special support hardware available?

– Creating audio/visual materials for the WWW:
• Photo digitizers or scanners, video digitizer, and audio digitizer.

• Once these are in a standard digital format, they can be imported
to Web development programs.

Web Page Design Software:
Dreamweaver

• One final note:

– Dreamweaver and other Web page design
software create Web pages. You still need a place
to keep your Web page.

• ISP (Internet Service Provider): A company or
organization that is used as an access point to the
WWW.
– The ISP will put your Web page on its server.

– You will be given an address where you or others can access
your Web page.

