
Semantics 

• Static semantics 
– attribute grammars 

• examples 
• computing attribute values 
• status 

• Dynamic semantics 
– operational semantics 
– axiomatic semantics 

• examples 
• loop invariants 
• evaluation 

– denotational semantics 
• examples 
• evaluation 



Static Semantics 

• Used to define things about PLs that are hard or 
impossible to define with BNF 
– hard: type compatibility 

– impossible: declare before use 

• Can be determined at compile time 
– hence the term static 

• Often specified using natural language descriptions 
– imprecise 

• Better approach is to use attribute grammars 
– Knuth (1968) 



Attribute Grammars 

• Carry some semantic information along through 
parse tree 

• Useful for 
– static semantic specification 
– static semantic checking in compilers 

• An attribute grammar is a CFG G = (S, N, T, P) with 
the additions 
– for each grammar symbol x there is a set A(x) of 

attribute values 
– each production rule has a set of functions that define 

certain attributes of the non-terminals in the rule 
– each production rule has a (possibly empty) set of 

predicates to check for attribute consistency 
• valid derivations have predicates true for each node 



Attribute Grammars (continued) 

• Synthesized attributes 
– are determined from nodes of children in parse tree 

• if X0 -> X1 ... Xn is a rule, then S(X0) = f(A(X1), ..., A(Xn)) 

– pass semantic information up the tree 

• Inherited attributes 
– are determined from parent and siblings 

• I(Xj) = f(A(X0), ..., A(Xn)) 

• often, just X0 ... Xj-1  
– siblings to left in parse tree 

– pass semantic information down the tree 

 



Attribute Grammars (continued) 

• Intrinsic attributes 

– synthesized attributes of leaves of parse tree 

– determined from outside tree 

• e.g., symbol table 



Attribute Grammars (continued) 
Example: expressions of the form  id + id 

   - id's can be either int_type or real_type 

   - types of the two id's must be the same 

   - type of the expression must match its 

  expected type 

 

BNF: <expr> -> <var> + <var> 

     <var> -> id 

 

Attributes: 

  actual_type - synthesized for <var> and 

<expr> 

  expected_type - inherited for <expr> 

  env - inherited for <expr> and <var> 



Attribute Grammars (continued) 
• Think of attributes as variables in the parse tree, 

whose values are calculated at compile time 
– conceptually, after parse tree is built 

• Example attributes 
– actual_type 

• intrinsic for variables 
• determined from types of child nodes for <expr> 

– expected_type 
• for <expr>, determined by type of variable on LHS of assignment 

statement, for example 

– env 
• pointer to correct symbol table environment, to be sure 

semantic information used is correct set 
– think of different variable scopes  



Attribute Grammars (continued) 
Attribute Grammar: 

 

1. syntax rule:  <expr> -> <var>[1] + <var>[2] 

   semantic rules:  

     <var>[1].env <- <expr>.env 

     <var>[2].env <- <expr>.env 

     <expr>.actual_type <- <var>[1].actual_type 

   predicate:  

     <var>[1].actual_type = var>[2].actual_type 

     <expr>.expected_type = <expr>.actual_type 

 

2. syntax rule:  <var> -> id 

   semantic rule: 

     <var>.actual_type <- lookup (id,<var>.env) 

 



Computing Attribute Values 

• If all attributes were inherited, could “decorate” 
the tree top-down 

• If all attributes were synthesized, could decorate 
the tree bottom-up 

• Usually, both kinds are used 
– use both top-down and bottom-up approaches 

– actual determination of order can be complicated, 
requiring calculations of dependency graphs 

• One order that works for this simple grammar is 
on the next slide 



Computing Attribute Values 
(continued) 

1. <expr>.env <- inherited from parent 

   <expr>.expected_type <- inherited from 

      parent 

 

2. <var>[1].env <- <expr>.env 

   <var>[2].env <- <expr>.env 

 

3. <var>[1].actual_type <- lookup(A,<var>[1].env) 

  <var>[2].actual_type <- lookup (B,<var>[2].env) 

  <var>[1].actual_type =? <var>[2].actual_type 

 

4. <expr>.actual_type <- <var>[1].actual_type 

   <expr>.actual_type =? <expr>.expected_type 



Status of Attribute Grammars 

• Well-defined, well-understood formalism 

– used for several practical compilers 

• Grammars for real languages can become very 
large and cumbersome 

– and take significant amounts of computing time to 
evaluate 

• Very valuable in a less formal way for actual 
compiler construction 



Dynamic Semantics 

• Describe the meaning of PL constructs 

• No single widely accepted way of defining 

• Three approaches used 
– operational semantics 

– axiomatic semantics 

– denotational semantics 

• All are still in research stage, rather than 
practical use 
– most real compilers use ad-hoc methods 



Operational Semantics 

• Describe meaning of a program by executing its 
statements on a machine 
– actual or simulated 
– change of state of machine (values in memory, 

registers, etc.) defines meaning 

• Could use actual hardware machine 
– too expensive 

• Could use a software interpreter 
– too complicated, because of underlying machine 

complexity 
– not transportable 



Operational Semantics (continued) 

• Most common approach is to use simulator for 
simple, idealized (abstract) machine 
– build a translator (source code to machine code of 

simulated machine) 
– build a simulator 
– describe state transformations of simulated machine 

for each PL construct 
• Evaluation 

– good if used informally 
• can have circular reasoning, since PL is being defined in terms 

of another PL 
– extremely complex if used formally 

• VDL description of semantics of PL/I was several hundred 
pages long 



Axiomatic Semantics 
• Define meaning of PL construct by effect on logical 

assertions about constraints on program variables 

– based on predicate calculus 

– approach comes from program verification 

• Precondition is an assertion before a PL statement 

– states relationships and constraints among variables 
before statement is executed 

• Postcondition is an assertion following a statement 

– {P} statement {Q} 



Axiomatic Semantics (continued) 

• Weakest precondition is least restrictive 
precondition that will guarantee postcondition 

• a := b + 1  {a > 1} 

– possible precondition:  {b > 10} 

– weakest precondition:  {b > 0} 

 



Axiomatic Semantics (continued) 

• Axiom is a logical statement assumed to be 
true 

• Inference rule is a method of inferring the 
truth of one assertion based on other true 
assertions 

– basic form for inference rule is 

– if S1, ..., Sn are true, S is true 

S1, S2, ..., Sn 

        S 



Axiomatic Semantics (continued) 

• Then to prove a program 
– postcondition for program is desired result 

– work back through the program determining 
preconditions 
• which are postconditions for preceding statement 

– if precondition on first statement is same as 
program specification, program is correct 

• To define semantics for a PL 
– define axiom or inference rule for each statement 

type in the language 

 



Axiomatic Semantics Examples 
An axiom for assignment statements: 

 

   {Qx->E} x := E {Q} 

 

Qx->E means evaluate Q with E substituted for X 

 

  

The Rule of Consequence: 

 

   {P} S {Q}, P' => P, Q => Q' 

   ------------------------------------- 

 {P'} S {Q'} 

 

 



Axiomatic Semantics Examples 
(continued) 

An inference rule for sequences 
 
  - For a sequence: 
         
 {P1} S1 {P2} 
 {P2} S2 {P3} 
 
     the inference rule is: 
 
 {P1} S1 {P2}, {P2} S2 {P3} 
 ------------------------------------- 
         {P1} S1; S2 {P3} 



Axiomatic Semantic Examples 
(continued) 

An inference rule for logical pretest loops 
 
 For the loop construct: 
 
   {P} while B do S end {Q} 
 
 the inference rule is: 
 
  (I and B) S {I} 
 ------------------------------------------ 
 {I} while B do S {I and (not B)} 
 
 where I is the loop invariant. 



Loop Invariant Characteristics 

• The loop invariant I must meet the following 
conditions: 
–  P => I     

• the loop invariant must be true initially 

–  {I} B {I}     
• evaluation of the Boolean must not change the validity of I 

–  {I and B} S {I}     
• I is not changed by executing the body of the loop 

– (I and (notB)) => Q      
• if I is true and B is false, Q is implied 

– The loop terminates      
• this can be difficult to prove 



Axiomatic Semantics Evaluation 

• Developing axioms or inference rules for all 
statements in a PL is difficult 
– Hoare and Wirth failed for function side effects and 

goto statements in Pascal 

– limiting a language to those statements that can have 
such rules written is too restrictive 

• Good tool for research in program correctness 
and reasoning about programs 

• Not practically useful (yet) for language designers 
and compiler writers 



Denotational Semantics 

• Define meaning by mapping PL elements onto 
mathematical objects whose behavior is 
rigorously defined 
– based on recursive function theory 
– most abstract of the dynamic semantics approaches 

• To build a denotational specification for a 
language: 
– define a mathematical object for each language entity 
– define a function that maps instances of the language 

entities onto instances of the corresponding 
mathematical objects 



Denotational Semantics (continued) 

• The meaning of language constructs are defined 
by only the values of the program's variables 
– in operational semantics the state changes are 

defined by coded algorithms 
– in denotational semantics, they are defined by 

rigorous mathematical functions 

• The state of a program is the values of all its 
current variables 

• Assume VARMAP is a function that, when given a 
variable name and a state, returns the current 
value of the variable 
– VARMAP(ij, s) = vj       (the value of ij in state s) 

 
 



Denotational Semantics (continued) 
• Consider some examples 

 Expressions 

    Me(E, s):   if VARMAP(i, s) = undef for some i in E 

                  then error 

                  else E’, where E’ is the result of  

                          evaluating E after setting each 

                          variable i in E to VARMAP(i, s) 

 

 Assignment Statements 

    Ma(x:=E, s): if Me(E, s) = error 

               then error 

               else s’ = {<i1’,v1’>,...,<in’,vn’>}, 

                      where for j = 1, 2, ..., n, 

                            vj’= VARMAP(ij, s) if ij <> x 

                               = Me(E, s) if ij = x 

 

 



Denotational Semantics (continued) 
Logical Pretest Loops 

   Ml(while B do L, s) : if Mb(B, s) = undef 

                           then error 

                           else if Mb(B, s) = false 

                             then s 

                             else if Msl(L, s) = error 

                                then error 

                                else Ml(while B do L, 

                                           Msl(L, s)) 

 

•   The meaning of the loop is the value of the program  variables after the 
     statements in the loop have been executed the prescribed number of 
     times, assuming there have been no errors 
         - if the Boolean B is true, the meaning of the loop (state) is the 
 meaning of the loop executed in the state caused by executing  
 the loop body once 
•   In essence, the loop has been converted from iteration to recursion 
         - recursion is easier to describe with mathematical rigor than  
 iteration 

 



Denotational Semantics Evaluation 

• Can be used to prove the correctness of programs 

• Provides a rigorous way to think about programs 

• Can be an aid to language design 
– complex descriptions imply complex language 

features 

• Has been used in compiler generation systems 
– but not with practical effect 

• Not useful as descriptive mechanism for language 
users 


