
Semantics

• Static semantics
– attribute grammars

• examples
• computing attribute values
• status

• Dynamic semantics
– operational semantics
– axiomatic semantics

• examples
• loop invariants
• evaluation

– denotational semantics
• examples
• evaluation

Static Semantics

• Used to define things about PLs that are hard or
impossible to define with BNF
– hard: type compatibility

– impossible: declare before use

• Can be determined at compile time
– hence the term static

• Often specified using natural language descriptions
– imprecise

• Better approach is to use attribute grammars
– Knuth (1968)

Attribute Grammars

• Carry some semantic information along through
parse tree

• Useful for
– static semantic specification
– static semantic checking in compilers

• An attribute grammar is a CFG G = (S, N, T, P) with
the additions
– for each grammar symbol x there is a set A(x) of

attribute values
– each production rule has a set of functions that define

certain attributes of the non-terminals in the rule
– each production rule has a (possibly empty) set of

predicates to check for attribute consistency
• valid derivations have predicates true for each node

Attribute Grammars (continued)

• Synthesized attributes
– are determined from nodes of children in parse tree

• if X0 -> X1 ... Xn is a rule, then S(X0) = f(A(X1), ..., A(Xn))

– pass semantic information up the tree

• Inherited attributes
– are determined from parent and siblings

• I(Xj) = f(A(X0), ..., A(Xn))

• often, just X0 ... Xj-1
– siblings to left in parse tree

– pass semantic information down the tree

Attribute Grammars (continued)

• Intrinsic attributes

– synthesized attributes of leaves of parse tree

– determined from outside tree

• e.g., symbol table

Attribute Grammars (continued)
Example: expressions of the form id + id

 - id's can be either int_type or real_type

 - types of the two id's must be the same

 - type of the expression must match its

 expected type

BNF: <expr> -> <var> + <var>

 <var> -> id

Attributes:

 actual_type - synthesized for <var> and

<expr>

 expected_type - inherited for <expr>

 env - inherited for <expr> and <var>

Attribute Grammars (continued)
• Think of attributes as variables in the parse tree,

whose values are calculated at compile time
– conceptually, after parse tree is built

• Example attributes
– actual_type

• intrinsic for variables
• determined from types of child nodes for <expr>

– expected_type
• for <expr>, determined by type of variable on LHS of assignment

statement, for example

– env
• pointer to correct symbol table environment, to be sure

semantic information used is correct set
– think of different variable scopes

Attribute Grammars (continued)
Attribute Grammar:

1. syntax rule: <expr> -> <var>[1] + <var>[2]

 semantic rules:

 <var>[1].env <- <expr>.env

 <var>[2].env <- <expr>.env

 <expr>.actual_type <- <var>[1].actual_type

 predicate:

 <var>[1].actual_type = var>[2].actual_type

 <expr>.expected_type = <expr>.actual_type

2. syntax rule: <var> -> id

 semantic rule:

 <var>.actual_type <- lookup (id,<var>.env)

Computing Attribute Values

• If all attributes were inherited, could “decorate”
the tree top-down

• If all attributes were synthesized, could decorate
the tree bottom-up

• Usually, both kinds are used
– use both top-down and bottom-up approaches

– actual determination of order can be complicated,
requiring calculations of dependency graphs

• One order that works for this simple grammar is
on the next slide

Computing Attribute Values
(continued)

1. <expr>.env <- inherited from parent

 <expr>.expected_type <- inherited from

 parent

2. <var>[1].env <- <expr>.env

 <var>[2].env <- <expr>.env

3. <var>[1].actual_type <- lookup(A,<var>[1].env)

 <var>[2].actual_type <- lookup (B,<var>[2].env)

 <var>[1].actual_type =? <var>[2].actual_type

4. <expr>.actual_type <- <var>[1].actual_type

 <expr>.actual_type =? <expr>.expected_type

Status of Attribute Grammars

• Well-defined, well-understood formalism

– used for several practical compilers

• Grammars for real languages can become very
large and cumbersome

– and take significant amounts of computing time to
evaluate

• Very valuable in a less formal way for actual
compiler construction

Dynamic Semantics

• Describe the meaning of PL constructs

• No single widely accepted way of defining

• Three approaches used
– operational semantics

– axiomatic semantics

– denotational semantics

• All are still in research stage, rather than
practical use
– most real compilers use ad-hoc methods

Operational Semantics

• Describe meaning of a program by executing its
statements on a machine
– actual or simulated
– change of state of machine (values in memory,

registers, etc.) defines meaning

• Could use actual hardware machine
– too expensive

• Could use a software interpreter
– too complicated, because of underlying machine

complexity
– not transportable

Operational Semantics (continued)

• Most common approach is to use simulator for
simple, idealized (abstract) machine
– build a translator (source code to machine code of

simulated machine)
– build a simulator
– describe state transformations of simulated machine

for each PL construct
• Evaluation

– good if used informally
• can have circular reasoning, since PL is being defined in terms

of another PL
– extremely complex if used formally

• VDL description of semantics of PL/I was several hundred
pages long

Axiomatic Semantics
• Define meaning of PL construct by effect on logical

assertions about constraints on program variables

– based on predicate calculus

– approach comes from program verification

• Precondition is an assertion before a PL statement

– states relationships and constraints among variables
before statement is executed

• Postcondition is an assertion following a statement

– {P} statement {Q}

Axiomatic Semantics (continued)

• Weakest precondition is least restrictive
precondition that will guarantee postcondition

• a := b + 1 {a > 1}

– possible precondition: {b > 10}

– weakest precondition: {b > 0}

Axiomatic Semantics (continued)

• Axiom is a logical statement assumed to be
true

• Inference rule is a method of inferring the
truth of one assertion based on other true
assertions

– basic form for inference rule is

– if S1, ..., Sn are true, S is true

S1, S2, ..., Sn

 S

Axiomatic Semantics (continued)

• Then to prove a program
– postcondition for program is desired result

– work back through the program determining
preconditions
• which are postconditions for preceding statement

– if precondition on first statement is same as
program specification, program is correct

• To define semantics for a PL
– define axiom or inference rule for each statement

type in the language

Axiomatic Semantics Examples
An axiom for assignment statements:

 {Qx->E} x := E {Q}

Qx->E means evaluate Q with E substituted for X

The Rule of Consequence:

 {P} S {Q}, P' => P, Q => Q'

 {P'} S {Q'}

Axiomatic Semantics Examples
(continued)

An inference rule for sequences

 - For a sequence:

 {P1} S1 {P2}
 {P2} S2 {P3}

 the inference rule is:

 {P1} S1 {P2}, {P2} S2 {P3}

 {P1} S1; S2 {P3}

Axiomatic Semantic Examples
(continued)

An inference rule for logical pretest loops

 For the loop construct:

 {P} while B do S end {Q}

 the inference rule is:

 (I and B) S {I}
 --
 {I} while B do S {I and (not B)}

 where I is the loop invariant.

Loop Invariant Characteristics

• The loop invariant I must meet the following
conditions:
– P => I

• the loop invariant must be true initially

– {I} B {I}
• evaluation of the Boolean must not change the validity of I

– {I and B} S {I}
• I is not changed by executing the body of the loop

– (I and (notB)) => Q
• if I is true and B is false, Q is implied

– The loop terminates
• this can be difficult to prove

Axiomatic Semantics Evaluation

• Developing axioms or inference rules for all
statements in a PL is difficult
– Hoare and Wirth failed for function side effects and

goto statements in Pascal

– limiting a language to those statements that can have
such rules written is too restrictive

• Good tool for research in program correctness
and reasoning about programs

• Not practically useful (yet) for language designers
and compiler writers

Denotational Semantics

• Define meaning by mapping PL elements onto
mathematical objects whose behavior is
rigorously defined
– based on recursive function theory
– most abstract of the dynamic semantics approaches

• To build a denotational specification for a
language:
– define a mathematical object for each language entity
– define a function that maps instances of the language

entities onto instances of the corresponding
mathematical objects

Denotational Semantics (continued)

• The meaning of language constructs are defined
by only the values of the program's variables
– in operational semantics the state changes are

defined by coded algorithms
– in denotational semantics, they are defined by

rigorous mathematical functions

• The state of a program is the values of all its
current variables

• Assume VARMAP is a function that, when given a
variable name and a state, returns the current
value of the variable
– VARMAP(ij, s) = vj (the value of ij in state s)

Denotational Semantics (continued)
• Consider some examples

 Expressions

 Me(E, s): if VARMAP(i, s) = undef for some i in E

 then error

 else E’, where E’ is the result of

 evaluating E after setting each

 variable i in E to VARMAP(i, s)

 Assignment Statements

 Ma(x:=E, s): if Me(E, s) = error

 then error

 else s’ = {<i1’,v1’>,...,<in’,vn’>},

 where for j = 1, 2, ..., n,

 vj’= VARMAP(ij, s) if ij <> x

 = Me(E, s) if ij = x

Denotational Semantics (continued)
Logical Pretest Loops

 Ml(while B do L, s) : if Mb(B, s) = undef

 then error

 else if Mb(B, s) = false

 then s

 else if Msl(L, s) = error

 then error

 else Ml(while B do L,

 Msl(L, s))

• The meaning of the loop is the value of the program variables after the
 statements in the loop have been executed the prescribed number of
 times, assuming there have been no errors
 - if the Boolean B is true, the meaning of the loop (state) is the
 meaning of the loop executed in the state caused by executing
 the loop body once
• In essence, the loop has been converted from iteration to recursion
 - recursion is easier to describe with mathematical rigor than
 iteration

Denotational Semantics Evaluation

• Can be used to prove the correctness of programs

• Provides a rigorous way to think about programs

• Can be an aid to language design
– complex descriptions imply complex language

features

• Has been used in compiler generation systems
– but not with practical effect

• Not useful as descriptive mechanism for language
users

