
Foundations of Programming
Languages:

Introduction to Lambda Calculus

Lecture Outline

• Why study lambda calculus?

• Lambda calculus

– Syntax

– Evaluation

– Relationship to programming languages

• Next time: type systems for lambda calculus

Lambda Calculus. History.

• A framework developed in 1930s by Alonzo
Church to study computations with functions

• Church wanted a minimal notation

– to expose only what is essential

• Two operations with functions are essential:

– function creation

– function application

Function Creation

• Church introduced the notation
 lx. E

 to denote a function with formal argument x and
with body E

• Functions do not have names
– names are not essential for the computation

• Functions have a single argument
– once we understand how functions with one

argument work we can generalize to multiple args.

History of Notation

• Whitehead & Russel (Principia Mathematica)
used the notation ˆ P to denote the set of x’s
such that P holds

• Church borrowed the notation but moved ˆ

down to create x E

• Which later turned into lx. E and the calculus
became known as lambda calculus

x

Function Application

• The only thing that we can do with a function
is to apply it to an argument

• Church used the notation

 E1 E2

 to denote the application of function E1 to actual
argument E2

• All functions are applied to a single argument

Why Study Lambda Calculus?

• l-calculus has had a tremendous influence on
the design and analysis of programming
languages

• Realistic languages are too large and complex
to study from scratch as a whole

• Typical approach is to modularize the study
into one feature at a time
– E.g., recursion, looping, exceptions, objects, etc.

• Then we assemble the features together

Why Study Lambda Calculus?

• l-calculus is the standard testbed for studying
programming language features
– Because of its minimality
– Despite its syntactic simplicity the l-calculus can easily

encode:
• numbers, recursive data types, modules, imperative features,

exceptions, etc.

• Certain language features necessitate more
substantial extensions to l-calculus:
– for distributed & parallel languages: p-calculus
– for object oriented languages: -calculus

Why Study Lambda Calculus?

 “Whatever the next 700 languages turn out to
be, they will surely be variants of lambda
calculus.”

 (Landin 1966)

Syntax of Lambda Calculus

• Only three kinds of expressions

 E ::= x variables

 | E1 E2 function application

 | lx. E function creation

• The form lx. E is also called lambda
abstraction, or simply abstraction

• E are called l-terms or l-expressions

Examples of Lambda Expressions

• The identity function:

 I =def lx. x

• A function that given an argument y discards it
and computes the identity function:

 ly. (lx. x)

• A function that given a function f invokes it on
the identity function

 lf. f (l x. x)

Notational Conventions

• Application associates to the left

 x y z parses as (x y) z

• Abstraction extends to the right as
far as possible

lx. x ly. x y z parses as

l x. (x (ly. ((x y) z)))

• And yields the the parse tree:

lx

app

x ly

z

app

app

x y

Scope of Variables

• As in all languages with variables, it is
important to discuss the notion of scope

– Recall: the scope of an identifier is the portion of a
program where the identifier is accessible

• An abstraction lx. E binds variable x in E

– x is the newly introduced variable

– E is the scope of x

– we say x is bound in lx. E

– Just like formal function arguments are bound in
the function body

Free and Bound Variables

• A variable is said to be free in E if it is not
bound in E

• We can define the free variables of an
expression E recursively as follows:

 Free(x) = { x}

 Free(E1 E2) = Free(E1)  Free(E2)

 Free(lx. E) = Free(E) - { x }

• Example: Free(lx. x (ly. x y z)) = { z }

• Free variables are declared outside the term

Free and Bound Variables (Cont.)

• Just like in any language with static nested
scoping, we have to worry about variable
shadowing

– An occurrence of a variable might refer to
different things in different context

• E.g., in Cool: let x  E in x + (let x  E’ in x) + x

• In l-calculus: lx. x (lx. x) x

Renaming Bound Variables

• Two l-terms that can be obtained from each
other by a renaming of the bound variables are
considered identical

• Example: lx. x is identical to ly. y and to lz. z

• Intuition:

– by changing the name of a formal argument and of
all its occurrences in the function body, the
behavior of the function does not change

– in l-calculus such functions are considered identical

Renaming Bound Variables (Cont.)

• Convention: we will always rename bound
variables so that they are all unique

– e.g., write l x. x (l y.y) x instead of l x. x (l x.x) x

• This makes it easy to see the scope of bindings

• And also prevents serious confusion !

Substitution

• The substitution of E’ for x in E (written [E’/x]E
)

– Step 1. Rename bound variables in E and E’ so
they are unique

– Step 2. Perform the textual substitution of E’ for x
in E

• Example: [y (lx. x) / x] ly. (lx. x) y x

– After renaming: [y (lv. v)/x] lz. (lu. u) z x

– After substitution: lz. (lu. u) z (y (lv. v))

Evaluation of l-terms

• There is one key evaluation step in l-calculus:
the function application

 (lx. E) E’ evaluates to [E’/x]E

• This is called b-reduction

• We write E b E’ to say that E’ is obtained
from E in one b-reduction step

• We write E *
b E’ if there are zero or more

steps

Examples of Evaluation

• The identity function:
 (lx. x) E  [E / x] x = E

• Another example with the identity:
(lf. f (lx. x)) (lx. x) 

[lx. x / f] f (lx. x)) = [(lx. x) / f] f (ly. y)) =

(lx. x) (ly. y) 

[ly. y /x] x = ly. y

• A non-terminating evaluation:
(lx. xx)(lx. xx) 

[lx. xx / x]xx = [ly. yy / x] xx = (ly. yy)(ly. yy)  …

Functions with Multiple Arguments

• Consider that we extend the calculus with the
add primitive operation

• The l-term lx. ly. add x y can be used to add
two arguments E1 and E2:

(lx. ly. add x y) E1 E2 b
([E1/x] ly. add x y) E2 =

(ly. add E1 y) E2 b

[E2/y] add E1 y = add E1 E2

• The arguments are passed one at a time

Functions with Multiple Arguments

• What is the result of (lx. ly. add x y) E ?

– It is ly. add E y

 (A function that given a value E’ for y will compute
add E E’)

• The function lx. ly. E when applied to one
argument E’ computes the function ly. [E’/x]E

• This is one example of higher-order
computation

– We write a function whose result is another
function

Evaluation and the Static Scope

• The definition of substitution guarantees that
evaluation respects static scoping:

(l x. (ly. y x)) (y (lx. x)) b lz. z (y (lv. v))

(y remains free, i.e., defined externally)

• If we forget to rename the bound y:

(l x. (ly. y x)) (y (lx. x)) *
b ly. y (y (lv. v))

(y was free before but is bound now)

The Order of Evaluation

• In a l-term, there could be more than one
instance of (l x. E) E’

 (l y. (l x. x) y) E

– could reduce the inner or the outer \lambda

– which one should we pick? (l y. (l x. x) y) E

(ly. [y/x] x) E = (ly. y) E [E/y] (lx. x) y =(lx. x) E

E

inner outer

Order of Evaluation (Cont.)

• The Church-Rosser theorem says that any
order will compute the same result

– A result is a l-term that cannot be reduced further

• But we might want to fix the order of
evaluation when we model a certain language

• In (typical) programming languages, we do not
reduce the bodies of functions (under a l)

– functions are considered values

Call by Name

• Do not evaluate under a l

• Do not evaluate the argument prior to call

• Example:

(ly. (lx. x) y) ((lu. u) (lv. v)) bn

(lx. x) ((lu. u) (lv. v)) bn

(lu. u) (lv. v) bn

lv. v

Call by Value

• Do not evaluate under l

• Evaluate an argument prior to call

• Example:

(ly. (lx. x) y) ((lu. u) (lv. v)) bv

(ly. (lx. x) y) (lv. v) bv

(lx. x) (lv. v) bv

lv. v

Call by Name and Call by Value

• CBN

– difficult to implement

– order of side effects not predictable

• CBV:

– easy to implement efficiently

– might not terminate even if CBN might terminate

– Example: (lx. l z.z) ((ly. yy) (lu. uu))

• Outside the functional programming language
community, only CBV is used

Lambda Calculus and Programming
Languages

• Pure lambda calculus has only functions

• What if we want to compute with booleans,
numbers, lists, etc.?

• All these can be encoded in pure l-calculus

• The trick: do not encode what a value is but
what we can do with it!

• For each data type, we have to describe how it
can be used, as a function

– then we write that function in l-calculus

Encoding Booleans in Lambda
Calculus

• What can we do with a boolean?

– we can make a binary choice

• A boolean is a function that given two choices
selects one of them

– true =def lx. ly. x

– false =def lx. ly. y

– if E1 then E2 else E3 =def E1 E2 E3

• Example: if true then u else v is

 (lx. ly. x) u v b (ly. u) v b u

Encoding Pairs in Lambda Calculus

• What can we do with a pair?

– we can select one of its elements

• A pair is a function that given a boolean
returns the left or the right element

mkpair x y =def l b. x y

fst p =def p true

snd p =def p false

• Example:

fst (mkpair x y)  (mkpair x y) true  true x y  x

Encoding Natural Numbers in
Lambda Calculus

• What can we do with a natural number?

– we can iterate a number of times

• A natural number is a function that given an
operation f and a starting value s, applies f a
number of times to s:

0 =def lf. ls. s

1 =def lf. ls. f s

2 =def lf. ls. f (f s)

and so on

Computing with Natural Numbers

• The successor function

 succ n =def lf. ls. f (n f s)

• Addition

 add n1 n2 =def n1 succ n2

• Multiplication

 mult n1 n2 =def n1 (add n2) 0

• Testing equality with 0

 iszero n =def n (lb. false) true

Computing with Natural Numbers.
Example

mult 2 2 

2 (add 2) 0 

(add 2) ((add 2) 0) 

2 succ (add 2 0) 

2 succ (2 succ 0) 

succ (succ (succ (succ 0))) 

succ (succ (succ (lf. ls. f (0 f s)))) 

succ (succ (succ (lf. ls. f s))) 

succ (succ (lg. ly. g ((lf. ls. f s) g y)))

succ (succ (lg. ly. g (g y))) * lg. ly. g (g (g (g y))) = 4

Computing with Natural Numbers.
Example

• What is the result of the application add 0 ?

(ln1. ln2. n1 succ n2) 0 b

ln2. 0 succ n2 =

ln2. (lf. ls. s) succ n2 b

ln2. n2 =

lx. x

• By computing with functions, we can express
some optimizations

Expressiveness of Lambda Calculus

• The l-calculus can express

– data types (integers, booleans, lists, trees, etc.)

– branching (using booleans)

– recursion

• This is enough to encode Turing machines

• Encodings are fun

• But programming in pure l-calculus is painful

– we will add constants (0, 1, 2, …, true, false, if-
then-else, etc.)

– and we will add types

