
Foundations of Programming 
Languages: 

Introduction to Lambda Calculus 



Lecture Outline 

• Why study lambda calculus? 

 

• Lambda calculus 

– Syntax 

– Evaluation 

– Relationship to programming languages 

 

• Next time: type systems for lambda calculus 



Lambda Calculus. History. 

• A framework developed in 1930s by Alonzo 
Church to study computations with functions 

• Church wanted a minimal notation 

– to expose only what is essential 

• Two operations with functions are essential: 

– function creation 

– function application 



Function Creation 

• Church introduced the notation 
                                lx. E 

   to denote a function  with formal argument x and 
with body E 

• Functions do not have names 
– names are not essential for the computation 

• Functions have a single argument 
– once we understand how functions with one 

argument work we can generalize to multiple args. 



History of Notation 

• Whitehead & Russel (Principia Mathematica) 
used the notation   ˆ P to denote the set of x’s 
such that P holds 

 

• Church borrowed the notation but moved ˆ 

down to create x E 
 

• Which later turned into  lx. E and the calculus 
became known as lambda calculus 

x 



Function Application 

• The only thing that we can do with a function 
is to apply it to an argument 

• Church used the notation 

                           E1 E2  

   to denote the application of function E1 to actual 
argument E2 

• All functions are applied to a single argument 



Why Study Lambda Calculus? 

•  l-calculus has had a tremendous influence on 
the design and analysis of programming 
languages 

• Realistic languages are too large and complex 
to study from scratch as a whole 

• Typical approach is to modularize the study 
into one feature at a time 
– E.g., recursion, looping, exceptions, objects, etc. 

• Then we assemble the features together 



Why Study Lambda Calculus? 

•  l-calculus is the standard testbed for studying 
programming language features 
– Because of its minimality 
– Despite its syntactic simplicity the l-calculus can easily 

encode: 
• numbers, recursive data types, modules, imperative features, 

exceptions, etc. 

• Certain language features necessitate more 
substantial extensions to l-calculus: 
– for distributed & parallel languages: p-calculus 
– for object oriented languages: -calculus 



Why Study Lambda Calculus? 

   

 

  “Whatever the next 700 languages turn out to 
be, they will surely be variants of lambda 
calculus.”  

                            (Landin 1966) 



Syntax of Lambda Calculus 

• Only three kinds of expressions 

     E ::= x                        variables 

         |  E1  E2                  function application                   

         |   lx. E                 function creation 

 

• The form lx. E is also called lambda 
abstraction, or simply abstraction 

• E are called l-terms or l-expressions 

 



Examples of Lambda Expressions 

• The identity function: 

                               I =def lx. x 

• A function that given an argument y discards it 
and computes the identity function: 

                            ly. (lx. x) 

• A function that given a function f invokes it on 
the identity function 

                           lf. f (l x. x) 



Notational Conventions 

• Application associates to the left 

           x y z parses as (x y) z 

• Abstraction extends to the right as 
far as possible 

lx. x ly. x y z parses as     

l x. (x (ly. ((x y) z))) 

• And yields the the parse tree: 

lx 

app 

x ly 

z 

app 

app 

x y 



Scope of Variables 

• As in all languages with variables, it is 
important to discuss the notion of scope 

– Recall: the scope of an identifier is the portion of a 
program where the identifier is accessible 

• An abstraction lx. E binds variable x in E 

– x is the newly introduced variable 

– E is the scope of x 

– we say x is bound in lx. E 

– Just like formal function arguments are bound in 
the function body 



Free and Bound Variables 

• A variable is said to be free in E if it is not 
bound in E 

• We can define the free variables of an 
expression E recursively as follows: 

         Free(x) = { x}  

         Free(E1 E2) = Free(E1)  Free(E2) 

         Free(lx. E) = Free(E) - { x } 

• Example: Free(lx. x (ly. x y z)) = { z } 

• Free variables are declared outside the term  



Free and Bound Variables (Cont.) 

• Just like in any language with static nested 
scoping, we have to worry about variable 
shadowing 

– An occurrence of a variable might refer to 
different things in different context 

• E.g., in Cool: let x  E in x + (let x  E’ in x) + x 

 

• In l-calculus: lx. x (lx. x) x 



Renaming Bound Variables 

• Two l-terms that can be obtained from each 
other by a renaming of the bound variables are 
considered identical 

• Example: lx. x is identical to ly. y and to lz. z 

• Intuition:  

– by changing the name of a formal argument and of 
all its occurrences in the function body, the 
behavior of the function does not change 

– in l-calculus such functions are considered identical 



Renaming Bound Variables (Cont.) 

• Convention: we will always rename bound 
variables so that they are all unique 

– e.g., write l x. x (l y.y) x instead of l x. x (l x.x) x 

• This makes it easy to see the scope of bindings 

• And also prevents serious confusion ! 



Substitution 

• The substitution of E’ for x in E (written [E’/x]E 
) 

– Step 1. Rename bound variables in E and E’ so 
they are unique 

– Step 2. Perform the textual substitution of E’ for x 
in E 

• Example: [y (lx. x) / x] ly. (lx. x) y x 

– After renaming: [y (lv. v)/x] lz. (lu. u) z x 

– After substitution: lz. (lu. u) z (y (lv. v)) 



Evaluation of l-terms 

• There is one key evaluation step in l-calculus: 
the function application 

     (lx. E) E’ evaluates to [E’/x]E 

• This is called b-reduction 

• We write E b E’ to say that E’ is obtained 
from E in one b-reduction step 

• We write E *
b E’ if there are zero or more 

steps 

 



Examples of Evaluation 

• The identity function:  
            (lx. x) E  [E / x] x = E 

• Another example with the identity: 
(lf. f (lx. x)) (lx. x)   

[lx. x / f] f (lx. x)) = [(lx. x) / f] f (ly. y)) =  

(lx. x) (ly. y)   

[ly. y /x] x = ly. y 

•  A non-terminating evaluation: 
(lx. xx)(lx. xx)  

[lx. xx / x]xx = [ly. yy / x] xx = (ly. yy)(ly. yy)  … 



Functions with Multiple Arguments 

• Consider that we extend the calculus with the 
add primitive operation  

• The l-term lx. ly. add x y can be used to add 
two arguments E1 and E2: 

(lx. ly. add x y) E1 E2  b  
([E1/x] ly. add x y) E2 = 

(ly. add E1 y) E2 b  

[E2/y] add E1 y  = add E1 E2 

• The arguments are passed one at a time 



Functions with Multiple Arguments 

• What is the result of (lx. ly. add x y) E ? 

– It is ly. add E y 

  (A function that given a value E’ for y will compute 
add E E’) 

• The function lx. ly. E when applied to one 
argument E’ computes the function ly. [E’/x]E 

• This is one example of higher-order 
computation 

– We write a function whose result is another 
function 



Evaluation and the Static Scope 

• The definition of substitution guarantees that 
evaluation respects static scoping: 

(l x. (ly. y x)) (y (lx. x)) b lz. z (y (lv. v)) 

 

(y remains free, i.e., defined externally) 

• If we forget to rename the bound y: 

(l x. (ly. y x)) (y (lx. x)) *
b ly. y (y (lv. v)) 

 

(y was free before but is bound now) 



The Order of Evaluation 

• In a l-term, there could be more than one 
instance of (l x. E) E’ 

                 (l y. (l x. x) y) E 

– could reduce the inner or the outer \lambda 

– which one should we pick? (l y. (l x. x) y) E 

(ly. [y/x] x) E = (ly. y) E [E/y] (lx. x) y =(lx. x) E 

E 

inner outer 



Order of Evaluation (Cont.) 

• The Church-Rosser theorem says that any 
order will compute the same result 

– A result is a l-term that cannot be reduced further 

• But we might want to fix the order of 
evaluation when we model a certain language 

• In (typical) programming languages, we do not 
reduce the bodies of functions (under a l) 

– functions are considered values 



Call by Name 

• Do not evaluate under a l 

• Do not evaluate the argument prior to call 

• Example: 

(ly. (lx. x) y) ((lu. u) (lv. v)) bn 

(lx. x) ((lu. u) (lv. v)) bn 

(lu. u) (lv. v) bn 

lv. v 



Call by Value 

• Do not evaluate under l 

• Evaluate an argument prior to call 

• Example: 

(ly. (lx. x) y) ((lu. u) (lv. v)) bv 

(ly. (lx. x) y) (lv. v)  bv 

(lx. x) (lv. v)  bv 

lv. v 

 



Call by Name and Call by Value 

• CBN 

– difficult to implement 

– order of side effects not predictable 

• CBV: 

– easy to implement efficiently 

– might not terminate even if CBN might terminate 

– Example: (lx. l z.z) ((ly. yy) (lu. uu)) 

• Outside the functional programming language 
community, only CBV is used 



Lambda Calculus and Programming 
Languages 

• Pure lambda calculus has only functions 

• What if we want to compute with booleans, 
numbers, lists, etc.? 

• All these can be encoded in pure l-calculus 

• The trick: do not encode what a value is but 
what we can do with it! 

• For each data type, we have to describe how it 
can be used, as a function 

– then we write that function in l-calculus 



Encoding Booleans in Lambda 
Calculus 

• What can we do with a boolean?  

– we can make a binary choice 

• A boolean is a function that given two choices 
selects one of them 

– true =def lx. ly. x 

– false =def lx. ly. y 

– if E1 then E2 else E3 =def E1 E2 E3 

• Example: if true then u else v is  

   (lx. ly. x) u v b (ly. u) v b u 



Encoding Pairs in Lambda Calculus 

• What can we do with a pair? 

– we can select one of its elements 

• A pair is a function that given a boolean 
returns the left or the right element 

mkpair x y  =def l b. x y 

fst p          =def p true 

snd p          =def p false 

• Example: 

fst (mkpair x y)  (mkpair x y) true  true x y  x 



Encoding Natural Numbers in 
Lambda Calculus 

• What can we do with a natural number? 

– we can iterate a number of times 

• A natural number is a function that given an 
operation f and a starting value s, applies f a 
number of times to s: 

0 =def lf. ls. s 

1 =def lf. ls. f s 

2 =def lf. ls. f (f s) 

and so on 



Computing with Natural Numbers 

• The successor function 

                succ n =def lf. ls. f (n f s) 

• Addition 

                add n1 n2 =def n1 succ n2  

• Multiplication 

                mult n1 n2 =def n1 (add n2) 0 

• Testing equality with 0 

                iszero n =def n (lb. false) true 



Computing with Natural Numbers. 
Example 

mult 2 2   

2 (add 2) 0   

(add 2) ((add 2) 0)  

2 succ (add 2 0)   

2 succ (2 succ 0)   

succ (succ (succ (succ 0)))  

succ (succ (succ (lf. ls. f (0 f s))))  

succ (succ (succ (lf. ls. f s)))  

succ (succ (lg. ly. g ((lf. ls. f s) g y))) 

succ (succ (lg. ly. g (g y))) * lg. ly. g (g (g (g y))) = 4 

 



Computing with Natural Numbers. 
Example 

• What is the result of the application add 0 ? 

(ln1. ln2. n1 succ n2) 0  b 

ln2. 0 succ n2 = 

ln2. (lf. ls. s) succ n2 b 

ln2. n2 = 

lx. x 

• By computing with functions, we can express 
some optimizations 



Expressiveness of Lambda Calculus 

• The l-calculus can express 

– data types (integers, booleans, lists, trees, etc.) 

– branching (using booleans) 

– recursion 

• This is enough to encode Turing machines 

• Encodings are fun 

• But programming in pure l-calculus is painful 

– we will add constants (0, 1, 2, …, true, false, if-
then-else, etc.) 

– and we will add types 


