Foundations of Programming Languages:
 Introduction to Lambda Calculus

Lecture Outline

- Why study lambda calculus?
- Lambda calculus
- Syntax
- Evaluation
- Relationship to programming languages
- Next time: type systems for lambda calculus

Lambda Calculus. History.

- A framework developed in 1930s by Alonzo Church to study computations with functions
- Church wanted a minimal notation
- to expose only what is essential
- Two operations with functions are essential:
- function creation
- function application

Function Creation

- Church introduced the notation

$$
\lambda x . E
$$

to denote a function with formal argument x and with body E

- Functions do not have names
- names are not essential for the computation
- Functions have a single argument
- once we understand how functions with one argument work we can generalize to multiple args.

History of Notation

- Whitehead \& Russel (Principia Mathematica) used the notation $\hat{x} P$ to denote the set of x 's such that P holds
- Church borrowed the notation but moved ${ }^{\wedge}$ down to create $\wedge x E$
- Which later turned into λx. E and the calculus became known as lambda calculus

Function Application

- The only thing that we can do with a function is to apply it to an argument
- Church used the notation

$$
\mathrm{E}_{1} \mathrm{E}_{2}
$$

to denote the application of function E_{1} to actual argument E_{2}

- All functions are applied to a single argument

Why Study Lambda Calculus?

- λ-calculus has had a tremendous influence on the design and analysis of programming languages
- Realistic languages are too large and complex to study from scratch as a whole
- Typical approach is to modularize the study into one feature at a time
- E.g., recursion, looping, exceptions, objects, etc.
- Then we assemble the features together

Why Study Lambda Calculus?

- λ-calculus is the standard testbed for studying programming language features
- Because of its minimality
- Despite its syntactic simplicity the λ-calculus can easily encode:
- numbers, recursive data types, modules, imperative features, exceptions, etc.
- Certain language features necessitate more substantial extensions to λ-calculus:
- for distributed \& parallel languages: π-calculus
- for object oriented languages: σ-calculus

Why Study Lambda Calculus?

"Whatever the next 700 languages turn out to be, they will surely be variants of lambda calculus."

(Landin 1966)

Syntax of Lambda Calculus

- Only three kinds of expressions

$$
\begin{aligned}
& E::=x \\
& \left\lvert\, \begin{array}{l}
E_{1} E_{2} \\
\\
\end{array} \quad \lambda x . E\right.
\end{aligned}
$$

variables
function application function creation

- The form λx. E is also called lambda abstraction, or simply abstraction
- E are called λ-terms or λ-expressions

Examples of Lambda Expressions

- The identity function:

$$
I==_{\text {def }} \lambda x . x
$$

- A function that given an argument y discards it and computes the identity function:

$$
\lambda y .(\lambda x . x)
$$

- A function that given a function f invokes it on the identity function

$$
\lambda f . f(\lambda x . x)
$$

Notational Conventions

- Application associates to the left

$$
x y z \text { parses as }(x y) z
$$

- Abstraction extends to the right as far as possible
$\lambda x . x \lambda y \cdot x y z$ parses as
$\lambda x .(x(\lambda y .((x y) z)))$
- And yields the the parse tree:

Scope of Variables

- As in all languages with variables, it is important to discuss the notion of scope
- Recall: the scope of an identifier is the portion of a program where the identifier is accessible
- An abstraction λx. E binds variable x in E
$-x$ is the newly introduced variable
$-E$ is the scope of x
- we say x is bound in λx. E
- Just like formal function arguments are bound in the function body

Free and Bound Variables

- A variable is said to be free in E if it is not bound in E
- We can define the free variables of an expression E recursively as follows:

$$
\begin{aligned}
& \operatorname{Free}(x)=\{x\} \\
& \operatorname{Free}\left(E_{1} E_{2}\right)=\operatorname{Free}\left(E_{1}\right) \cup \operatorname{Free}\left(E_{2}\right) \\
& \operatorname{Free}(\lambda x . E)=\operatorname{Free}(E)-\{x\}
\end{aligned}
$$

- Example: $\operatorname{Free}(\lambda x . x(\lambda y . x y z))=\{z\}$
- Free variables are declared outside the term

Free and Bound Variables (Cont.)

- Just like in any language with static nested scoping, we have to worry about variable shadowing
- An occurrence of a variable might refer to different things in different context
- E.g., in Cool: lettte Ein $x+\left(\operatorname{let} x<t^{\prime}\right.$ in $\left.x\right)+x$

Renaming Bound Variables

- Two λ-terms that can be obtained from each other by a renaming of the bound variables are considered identical
- Example: $\lambda x . x$ is identical to $\lambda y . y$ and to $\lambda z . z$
- Intuition:
- by changing the name of a formal argument and of all its occurrences in the function body, the behavior of the function does not change
- in λ-calculus such functions are considered identical

Renaming Bound Variables (Cont.)

- Convention: we will always rename bound variables so that they are all unique
- e.g., write $\lambda x . x(\lambda y . y) x$ instead of $\lambda x . x(\lambda x . x) x$
- This makes it easy to see the scope of bindings
- And also prevents serious confusion!

Substitution

- The substitution of E^{\prime} for x in E (written $\left[E^{\prime} / x\right] E$)
- Step 1. Rename bound variables in E and E' so they are unique
- Step 2. Perform the textual substitution of E^{\prime} for x in E
- Example: $[y(\lambda x . x) / x] \lambda y .(\lambda x . x) y x$
- After renaming: $[y(\lambda v, v) / x] \lambda z .(\lambda u . u) z x$
- After substitution: λz. $(\lambda u, u) z(y(\lambda v, v))$

Evaluation of λ-terms

- There is one key evaluation step in λ-calculus: the function application
(λx. E) E^{\prime} evaluates to $\left[E^{\prime} / X\right] E$
- This is called β-reduction
- We write $E \rightarrow_{\beta} E^{\prime}$ to say that E^{\prime} is obtained from E in one β-reduction step
- We write $E \rightarrow{ }_{\beta}^{*} E^{\prime}$ if there are zero or more steps

Examples of Evaluation

- The identity function:

$$
(\lambda x . x) E \rightarrow[E / x] x=E
$$

- Another example with the identity:
$(\lambda f . f(\lambda x . x))(\lambda x . x) \rightarrow$
$[\lambda x . x / f] f(\lambda x . x))=[(\lambda x . x) / f] f(\lambda y . y))=$
$(\lambda x . x)(\lambda y . y) \rightarrow$
$[\lambda y . y / x] x=\lambda y . y$
- A non-terminating evaluation:
$(\lambda x . x x)(\lambda x . x x) \rightarrow$
$[\lambda x . x x / x] x x=[\lambda y . y y / x] x x=(\lambda y . y y)(\lambda y . y y) \rightarrow \ldots$

Functions with Multiple Arguments

- Consider that we extend the calculus with the add primitive operation
- The λ-term λx. λy. add $\mathrm{x} y$ can be used to add two arguments E_{1} and E_{2} :
(λx. λy. add $x y$) $E_{1} E_{2} \rightarrow \beta$
$\left(\left[E_{1} / x\right] \lambda y\right.$. add $\left.x y\right) E_{2}=$
$\left(\lambda y\right.$. add $\left.E_{1} y\right) E_{2} \rightarrow \beta$
$\left[E_{2} / y\right]$ add $E_{1} y=\operatorname{add} E_{1} E_{2}$
- The arguments are passed one at a time

Functions with Multiple Arguments

- What is the result of $(\lambda x . \lambda y$. add $x y) E$?
- It is λy. add E y
(A function that given a value E^{\prime} for y will compute add E E')
- The function $\lambda x . \lambda y$. E when applied to one argument E^{\prime} computes the function λy. $\left[E^{\prime} / x\right] E$
- This is one example of higher-order computation
- We write a function whose result is another function

Evaluation and the Static Scope

- The definition of substitution guarantees that evaluation respects static scoping:
$\left(\lambda x .\left(\lambda_{y} y y\right)\right)(y(\lambda x, y)) \rightarrow_{\beta} \lambda_{y z}(y(\lambda y y))$
(y remains free, i.e., defined externally)
- If we forget to rename the bound y :

(y was free before but is bound now)

The Order of Evaluation

- In a λ-term, there could be more than one instance of $(\lambda x . E) E^{\prime}$

$$
(\lambda y .(\lambda x . x) y) E
$$

- could reduce the inner or the outer \lambda
- which one should we pick?
$(\lambda y,[y / x] \times \overbrace{\underbrace{\text { inner }}_{E} \quad[E / y](\lambda x, x) E}^{\text {outer }} y=(\lambda x, x) E$

Order of Evaluation (Cont.)

- The Church-Rosser theorem says that any order will compute the same result
- A result is a λ-term that cannot be reduced further
- But we might want to fix the order of evaluation when we model a certain language
- In (typical) programming languages, we do not reduce the bodies of functions (under a λ)
- functions are considered values

Call by Name

- Do not evaluate under a λ
- Do not evaluate the argument prior to call
- Example:
$(\lambda y .(\lambda x . x) y)((\lambda u . u)(\lambda v . v)) \rightarrow_{\beta n}$
$(\lambda x . x)((\lambda u . u)(\lambda v . v)) \rightarrow_{\beta n}$
$(\lambda u . u)(\lambda v, v) \rightarrow_{\beta n}$
$\lambda v . v$

Call by Value

- Do not evaluate under λ
- Evaluate an argument prior to call
- Example:
$(\lambda y .(\lambda x . x) y)((\lambda u . u)(\lambda v . v)) \rightarrow_{\beta v}$
$(\lambda y .(\lambda x, x) y)(\lambda v, v) \rightarrow_{\beta v}$
$(\lambda x . x)(\lambda v, v) \rightarrow_{\beta v}$
$\lambda \mathrm{v} . \mathrm{v}$

Call by Name and Call by Value

- CBN
- difficult to implement
- order of side effects not predictable
- CBV:
- easy to implement efficiently
- might not terminate even if CBN might terminate
- Example: ($\lambda x . \lambda z . z)$ ((λy. yy) ($\lambda u . u u)$)
- Outside the functional programming language community, only CBV is used

Lambda Calculus and Programming

Languages

- Pure lambda calculus has only functions
- What if we want to compute with booleans, numbers, lists, etc.?
- All these can be encoded in pure λ-calculus
- The trick: do not encode what a value is but what we can do with it!
- For each data type, we have to describe how it can be used, as a function
- then we write that function in λ-calculus

Encoding Booleans in Lambda Calculus

- What can we do with a boolean?
- we can make a binary choice
- A boolean is a function that given two choices selects one of them
- true $=_{\text {def }} \lambda x . \lambda y . x$
- false $=_{\text {def }} \lambda x . \lambda y . y$
- if E_{1} then E_{2} else $E_{3}={ }_{\text {def }} E_{1} E_{2} E_{3}$
- Example: if true then u else v is

$$
(\lambda x \cdot \lambda y \cdot x) u v \rightarrow_{\beta}(\lambda y, u) v \rightarrow_{\beta} u
$$

Encoding Pairs in Lambda Calculus

- What can we do with a pair?
- we can select one of its elements
- A pair is a function that given a boolean returns the left or the right element

$$
\begin{array}{ll}
\text { mkpair } x y & =_{\text {def }} \lambda b \cdot x y \\
\text { fst } p & =_{\text {def }} p \text { true } \\
\text { snd } p & =_{\text {def }} p \text { false }
\end{array}
$$

- Example:
fst (mkpair $x y$) \rightarrow (mkpair $x y$) true \rightarrow true $x y \rightarrow x$

Encoding Natural Numbers in Lambda Calculus

- What can we do with a natural number?
- we can iterate a number of times
- A natural number is a function that given an operation f and a starting value s, applies f a number of times to s :
$0==_{\text {def }} \lambda \mathrm{f}$. $\lambda \mathrm{s}$. s
$1=_{\text {def }} \lambda \mathrm{f} . \lambda \mathrm{s} . \mathrm{fs}$
$2=_{\text {def }} \lambda f . \lambda s . f(f s)$
and so on

Computing with Natural Numbers

- The successor function

$$
\operatorname{succ} n={ }_{\text {def }} \lambda f . \lambda s . f(n f s)
$$

- Addition

$$
\text { add } n_{1} n_{2}={ }_{\text {def }} n_{1} \text { succ } n_{2}
$$

- Multiplication

$$
\text { mult } n_{1} n_{2}={ }_{\text {def }} n_{1}\left(\text { add } n_{2}\right) 0
$$

- Testing equality with 0

$$
\text { iszero } n==_{\text {def }} n(\lambda b \text {. false) true }
$$

Computing with Natural Numbers.

Example

mult $22 \rightarrow$
2 (add 2) $0 \rightarrow$
(add 2) ((add 2) 0) \rightarrow
2 succ (add 20) \rightarrow
2 succ (2 succ 0) \rightarrow
$\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(\operatorname{succ} 0))) \rightarrow$
$\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(\lambda f . \lambda s . f(0 f s)))) \rightarrow$
$\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(\lambda f . \lambda s . f s))) \rightarrow$
$\operatorname{succ}(\operatorname{succ}(\lambda g . \lambda y . g((\lambda f . \lambda s . f s) g y)))$
$\operatorname{succ}(\operatorname{succ}(\lambda g \cdot \lambda y . g(g y))) \rightarrow^{*} \lambda g . \lambda y . g(g(g(g y)))=4$

Computing with Natural Numbers.

Example

- What is the result of the application add 0 ?
$\left(\lambda n_{1} \cdot \lambda n_{2} \cdot n_{1}\right.$ succ $\left.n_{2}\right) 0 \rightarrow_{\beta}$
$\lambda n_{2} .0$ succ $n_{2}=$
λn_{2}. $\left(\lambda \mathrm{f} . \lambda \mathrm{s}\right.$. s) succ $n_{2} \rightarrow_{\beta}$
$\lambda n_{2} \cdot n_{2}=$
$\lambda \mathrm{x}$. x
- By computing with functions, we can express some optimizations

Expressiveness of Lambda Calculus

- The λ-calculus can express
- data types (integers, booleans, lists, trees, etc.)
- branching (using booleans)
- recursion
- This is enough to encode Turing machines
- Encodings are fun
- But programming in pure λ-calculus is painful
- we will add constants ($0,1,2, \ldots$, true, false, if-then-else, etc.)
- and we will add types

