Foundations of Programming Languages: Introduction to Lambda Calculus

Lecture Outline

• Why study lambda calculus?

- Lambda calculus
 - Syntax
 - Evaluation
 - Relationship to programming languages
- Next time: type systems for lambda calculus

Lambda Calculus. History.

- A framework developed in 1930s by Alonzo Church to study computations with functions
- Church wanted a minimal notation
 - to expose only what is essential
- Two operations with functions are essential:
 - function creation
 - function application

Function Creation

• Church introduced the notation

λ**x.** Ε

to denote a function with formal argument x and with body E

• Functions do not have names

names are not essential for the computation

- Functions have a single argument
 - once we understand how functions with one argument work we can generalize to multiple args.

History of Notation

- Whitehead & Russel (Principia Mathematica) used the notation \$\hitessim P\$ to denote the set of x's such that P holds
- Church borrowed the notation but moved ^ down to create AX E
- Which later turned into λx . E and the calculus became known as lambda calculus

Function Application

- The only thing that we can do with a function is to apply it to an argument
- Church used the notation

 $E_1 E_2$

to denote the application of function $\rm E_1$ to actual argument $\rm E_2$

• All functions are applied to a single argument

Why Study Lambda Calculus?

- λ-calculus has had a tremendous influence on the design and analysis of programming languages
- Realistic languages are too large and complex to study from scratch as a whole
- Typical approach is to modularize the study into one feature at a time

- E.g., recursion, looping, exceptions, objects, etc.

• Then we assemble the features together

Why Study Lambda Calculus?

- λ -calculus is the standard testbed for studying programming language features
 - Because of its minimality
 - Despite its syntactic simplicity the $\lambda\text{-calculus}$ can easily encode:
 - numbers, recursive data types, modules, imperative features, exceptions, etc.
- Certain language features necessitate more substantial extensions to λ -calculus:
 - for distributed & parallel languages: π -calculus
 - for object oriented languages: σ -calculus

Why Study Lambda Calculus?

"Whatever the next 700 languages turn out to be, they will surely be variants of lambda calculus."

(Landin 1966)

Syntax of Lambda Calculus

- Only three kinds of expressions
 - E ::= xvariables $| E_1 E_2$ function application $| \lambda x. E$ function creation

- The form λx . E is also called lambda abstraction, or simply <u>abstraction</u>
- E are called λ -terms or λ -expressions

Examples of Lambda Expressions

• The identity function:

 $I =_{def} \lambda x. x$

 A function that given an argument y discards it and computes the identity function:

λγ. (λχ. χ)

 A function that given a function f invokes it on the identity function

 λ f. f (λ x. x)

Notational Conventions

Application associates to the left

x y z parses as (x y) z

 Abstraction extends to the right as far as possible

 $\lambda x. x \lambda y. x y z$ parses as

 λ x. (x (λ y. ((x y) z)))

• And yields the the parse tree:

Scope of Variables

- As in all languages with variables, it is important to discuss the notion of scope
 - Recall: the scope of an identifier is the portion of a program where the identifier is accessible
- An abstraction λx . E <u>binds</u> variable x in E
 - x is the newly introduced variable
 - -E is the scope of x
 - we say x is bound in λx . E
 - Just like formal function arguments are bound in the function body

Free and Bound Variables

- A variable is said to be <u>free</u> in E if it is not bound in E
- We can define the free variables of an expression E recursively as follows:

Free(x) = { x} Free(E₁ E₂) = Free(E₁) \cup Free(E₂) Free(λx . E) = Free(E) - { x }

- Example: Free(λx. x (λy. x y z)) = { z }
- Free variables are declared outside the term

Free and Bound Variables (Cont.)

- Just like in any language with static nested scoping, we have to worry about variable shadowing
 - An occurrence of a variable might refer to different things in different context
- E.g., in Cool: let $x^{\uparrow} \leftarrow E \text{ in } x + (\text{let } x \leftarrow \uparrow E' \text{ in } x) + x)$
- In λ -calculus: $\lambda \lambda \frac{1}{\lambda} \frac{1}{$

Renaming Bound Variables

- Two λ-terms that can be obtained from each other by a renaming of the bound variables are considered identical
- Example: λx . x is identical to λy . y and to λz . z
- Intuition:
 - by changing the name of a formal argument and of all its occurrences in the function body, the behavior of the function does not change
 - in λ -calculus such functions are considered identical

Renaming Bound Variables (Cont.)

- Convention: we will always rename bound variables so that they are all unique

 e.g., write λ x. x (λ y.y) x instead of λ x. x (λ x.x) x
- This makes it easy to see the scope of bindings
- And also prevents serious confusion !

Substitution

- The substitution of E' for x in E (written [E'/x]E
)
 - Step 1. Rename bound variables in E and E' so they are unique
 - Step 2. Perform the textual substitution of E' for x in E
- Example: [y (λx. x) / x] λy. (λx. x) y x
 - After renaming: [y (λ v. v)/x] λ z. (λ u. u) z x

- After substitution: λz . (λu . u) z (y (λv . v))

Evaluation of λ -terms

- There is one key evaluation step in λ-calculus: the function application
 (λx. E) E' evaluates to [E'/x]E
- This is called β -reduction
- We write $E \rightarrow_{\beta} E'$ to say that E' is obtained from E in one β -reduction step
- We write $E \rightarrow^*_{\beta} E'$ if there are zero or more steps

Examples of Evaluation

• The identity function:

 $(\lambda x. x) \to [E / x] x = E$

• Another example with the identity:

 $(\lambda f. f (\lambda x. x)) (\lambda x. x) \rightarrow$ $[\lambda x. x / f] f (\lambda x. x)) = [(\lambda x. x) / f] f (\lambda y. y)) =$ $(\lambda x. x) (\lambda y. y) \rightarrow$ $[\lambda y. y / x] x = \lambda y. y$

A non-terminating evaluation:
 (λx. xx)(λx. xx) →
 [λx. xx / x]xx = [λy. yy / x] xx = (λy. yy)(λy. yy) → ...

Functions with Multiple Arguments

- Consider that we extend the calculus with the add primitive operation
- The λ -term λx . λy . add x y can be used to add two arguments E_1 and E_2 :

 $(\lambda x. \lambda y. add x y) E_1 E_2 \rightarrow_{\beta}$ $([E_1/x] \lambda y. add x y) E_2 =$ $(\lambda y. add E_1 y) E_2 \rightarrow_{\beta}$ $[E_2/y] add E_1 y = add E_1 E_2$

• The arguments are passed one at a time

Functions with Multiple Arguments

- What is the result of $(\lambda x. \lambda y. add x y) E$?
 - It is λy . add E y

(A function that given a value E' for y will compute add E E')

- The function λx . λy . E when applied to one argument E' computes the function λy . [E'/x]E
- This is one example of <u>higher-order</u> computation
 - We write a function whose result is another function

Evaluation and the Static Scope

• The definition of substitution guarantees that evaluation respects static scoping:

 $(\lambda \chi. (\lambda \chi. \gamma \chi)) (\gamma (\lambda \chi. \chi)) \rightarrow_{\beta} \lambda z. z (\gamma (\lambda \chi. \gamma))$

(y remains free, i.e., defined externally)

• If we forget to rename the bound y: $(\lambda \stackrel{\uparrow}{k} (\lambda \stackrel{\downarrow}{y}, \stackrel{\downarrow}{y})) (y (\lambda \stackrel{\uparrow}{k}, \stackrel{\downarrow}{x})) \rightarrow {}^{*}_{\beta} \lambda \stackrel{\downarrow}{\psi} (\stackrel{\downarrow}{y} (\lambda \stackrel{\downarrow}{v}, \stackrel{\downarrow}{v}))$

(y was free before but is bound now)

The Order of Evaluation

- In a λ-term, there could be more than one instance of (λ x. E) E'
 (λ y. (λ x. x) y) E
 - could reduce the inner or the outer \lambda

Order of Evaluation (Cont.)

- The Church-Rosser theorem says that any order will compute the same result

 A result is a λ-term that cannot be reduced further
- But we might want to fix the order of evaluation when we model a certain language
- In (typical) programming languages, we do not reduce the bodies of functions (under a λ)
 - functions are considered values

Call by Name

- Do not evaluate under a λ
- Do not evaluate the argument prior to call
- Example:

$$\begin{split} &(\lambda y. (\lambda x. x) y) ((\lambda u. u) (\lambda v. v)) \rightarrow_{\beta n} \\ &(\lambda x. x) ((\lambda u. u) (\lambda v. v)) \rightarrow_{\beta n} \\ &(\lambda u. u) (\lambda v. v) \rightarrow_{\beta n} \\ &\lambda v. v \end{split}$$

Call by Value

- Do not evaluate under λ
- Evaluate an argument prior to call
- Example:

 $\begin{aligned} &(\lambda y. (\lambda x. x) y) ((\lambda u. u) (\lambda v. v)) \rightarrow_{\beta v} \\ &(\lambda y. (\lambda x. x) y) (\lambda v. v) \rightarrow_{\beta v} \\ &(\lambda x. x) (\lambda v. v) \rightarrow_{\beta v} \\ &\lambda v. v \end{aligned}$

Call by Name and Call by Value

- CBN
 - difficult to implement
 - order of side effects not predictable
- CBV:
 - easy to implement efficiently
 - might not terminate even if CBN might terminate
 - Example: $(\lambda x. \lambda z.z) ((\lambda y. yy) (\lambda u. uu))$
- Outside the functional programming language community, only CBV is used

Lambda Calculus and Programming Languages

- Pure lambda calculus has only functions
- What if we want to compute with booleans, numbers, lists, etc.?
- All these can be encoded in pure λ -calculus
- The trick: do not encode what a value is but what we can do with it!
- For each data type, we have to describe how it can be used, as a function

– then we write that function in λ -calculus

Encoding Booleans in Lambda Calculus

• What can we do with a boolean?

- we can make a binary choice

- A boolean is a function that given two choices selects one of them
 - true =_{def} λx . λy . x
 - false =_{def} λx . λy . y
 - if E_1 then E_2 else $E_3 =_{def} E_1 E_2 E_3$
- Example: if true then u else v is $(\lambda x. \lambda y. x) u v \rightarrow_{\beta} (\lambda y. u) v \rightarrow_{\beta} u$

Encoding Pairs in Lambda Calculus

- What can we do with a pair?
 we can select one of its elements
- A pair is a function that given a boolean returns the left or the right element

mkpair x y =_{def} λ b. x y

fst p =_{def} p true

snd p =_{def} p false

• Example:

fst (mkpair x y) \rightarrow (mkpair x y) true \rightarrow true x y \rightarrow x

Encoding Natural Numbers in Lambda Calculus

- What can we do with a natural number?
 we can iterate a number of times
- A natural number is a function that given an operation f and a starting value s, applies f a number of times to s:

 $0 =_{def} \lambda f. \lambda s. s$ $1 =_{def} \lambda f. \lambda s. f s$ $2 =_{def} \lambda f. \lambda s. f (f s)$ and so on

Computing with Natural Numbers

• The successor function

succ n =_{def} $\lambda f. \lambda s. f(n f s)$

Addition

add $n_1 n_2 =_{def} n_1 \operatorname{succ} n_2$

Multiplication

 $mult n_1 n_2 =_{def} n_1 (add n_2) 0$

• Testing equality with 0

iszero n =_{def} n (λ b. false) true

Computing with Natural Numbers. Example

mult 2 2 \rightarrow 2 (add 2) $0 \rightarrow$ $(add 2) ((add 2) 0) \rightarrow$ 2 succ (add 2 0) \rightarrow 2 succ (2 succ 0) \rightarrow succ (succ (succ (succ 0))) \rightarrow succ (succ ($\lambda f. \lambda s. f(0 f s)$))) \rightarrow succ (succ (succ ($\lambda f. \lambda s. f s$))) \rightarrow succ (succ (λg . λy . g ((λf . λs . f s) g y))) succ (succ (λg . λy . g(g y))) $\rightarrow^* \lambda g$. λy . g(g(g (g y))) = 4

Computing with Natural Numbers. Example

• What is the result of the application add 0 ?

```
(\lambda n_1, \lambda n_2, n_1 \operatorname{succ} n_2) 0 \rightarrow_{\beta}

\lambda n_2, 0 \operatorname{succ} n_2 =

\lambda n_2, (\lambda f, \lambda s, s) \operatorname{succ} n_2 \rightarrow_{\beta}

\lambda n_2, n_2 =

\lambda x, x
```

 By computing with functions, we can express some optimizations

Expressiveness of Lambda Calculus

- The λ -calculus can express
 - data types (integers, booleans, lists, trees, etc.)
 - branching (using booleans)
 - recursion
- This is enough to encode Turing machines
- Encodings are fun
- But programming in pure λ -calculus is painful
 - we will add constants (0, 1, 2, ..., true, false, ifthen-else, etc.)
 - and we will add types