
UNIT 4
Server Site Programming

Introduction to active server pages
(ASP)

• ASP stands for Active Server Pages
• ASP is a Microsoft Technology
• ASP is a program that runs inside IIS
• IIS stands for Internet Information Services
• IIS comes as a free component with Windows 2000
• IIS is also a part of the Windows NT 4.0 Option Pack
• The Option Pack can be downloaded from Microsoft
• PWS is a smaller - but fully functional - version of IIS
• PWS can be found on your Windows 95/98 CD
• An ASP file is just the same as an HTML file
• An ASP file can contain text, HTML, XML, and scripts
• Scripts in an ASP file are executed on the server
• An ASP file has the file extension ".asp"

ASP.NET

• ASP.NET is a new ASP generation. It is not compatible with Classic
ASP, but ASP.NET may include Classic ASP.

• ASP.NET pages are compiled, which makes them faster than
Classic ASP.

• ASP.NET has better language support, a large set of user controls,
XML-based components, and integrated user authentication.

• ASP.NET pages have the extension .aspx, and are normally written
in VB (Visual Basic) or C# (C sharp).

• User controls in ASP.NET can be written in different languages,
including C++ and Java.

• When a browser requests an ASP.NET file, the ASP.NET engine
reads the file, compiles and executes the scripts in the file, and
returns the result to the browser as plain HTML

Introduction to JSP

• JSP technology is used to create web application. It focuses more
on presentation logic of the web apllication.JSP pages are easier
to maintain then a Servlet. JSP pages are opposite of Servlets.
Servlet adds HTML code inside Java code while JSP adds Java code
inside HTML. Everything a Servlet can do, a JSP page can also do
it.

• JSP enables us to write HTML pages containing tags that run
powerful Java programs. JSP separates presentation and
business logic as Web designer can design and update JSP pages
without learning the Java language and Java Developer can also
write code without concerning the web design.

JSP processing

First Simple Interactive JSP example

• helloJsp.jsp Hello User example: the HTML page takes a user
name from a HTML form and sends a request to a JSP page,
and JSP page generates a dynamic HTML greeting page based
on the data which comes with the request

• The request may come from a Web form page request or from
a query string following an URL address of this JSP page.

• HTML file named index.html is placed in the JSP directory
which is this Web application ROOT directory under webapps.

First Simple Interactive JSP example (cont.)

<html>
<head>
 <title>Demo1</title>
</head>
<body>
<h3>Please enter the user name :</h3><p>
<form action="/jsp/helloJsp.jsp">
UserName : <input type="text" name="userName">

<input type="submit" value="Submit">
</form>
</body>
</html>

Since index.html is the default html name for Tomcat that you even don’t

need to specify the index.html in the URL address of the browser.

First Simple Interactive JSP example (cont.)

• This HTML takes a string of a user name from the HTML form
and submits a request to helloJsp.jsp as specified in the action
attribute of the HTML form. For example, a user types SPSU in
the form and pushes the Submit button.

First Simple Interactive JSP example (cont.)

Tomcat Server

• Apache Tomcat is an Apache module that provides a web server in addition to the Apache
web server. The Tomcat web server supports Java Servlets and JavaServer pages.

• Tomcat, is an open-source web server and servlet container developed by the Apache
Software Foundation (ASF). Tomcat implements several Java EE specifications including Java
Servlet,JavaServer Pages(JSP), Java EL, and WebSocket, and provides a "pureJava" HTTP web
server environment for Java code to run in.

• Tomcat is developed and maintained by an open community of developers under the
auspices of the Apache Software Foundation, released under theApache License 2.0 license,
and is open-source software.

Implicit JSP objects
• JSP Implicit Objects are the Java objects that

the JSP Container makes available to
developers in each page and developer can
call them directly without being explicitly
declared. JSP Implicit Objects are also called
pre-defined variables.

• JSP supports nine Implicit Objects which are
listed below:

Declaring variables and methods
• The JSP declaration tag is used to declare fields and methods.
• The code written inside the jsp declaration tag is placed outside the service() method of auto

generated servlet. So it doesn't get memory at each request.

• Syntax of JSP declaration tag
• The syntax of the declaration tag is as follows:
<%! field or method declaration %>
<html>
<body>
<%! int data=50; %>
<%= "Value of the variable is:"+data %>
</body>
</html>

<html>
<body>
<%!
int cube(int n){
return n*n*n*;
}
%>
<%= "Cube of 3 is:"+cube(3) %>
</body>
</html>

Error Handling and Debugging

• Using System.out.println():

System.out.println() is easy to use as a marker to
test whether a certain piece of code is being
executed or not. We can print out variable values as
well.

• Using the JDB Logger:

The J2SE logging framework is designed to provide
logging services for any class running in the JVM. So
we can make use of this framework to log any
information.

Data base action

Accessing a database from a JSP Page
Java Server Pages has Standard Tag Library which includes
the number of actions for the database access to improve
the simple database-driven Java Server Page applications.
Basically these actions are used to provide the following
features:
• Using a connection pool for better performance and

scalability.
• The features are to support the queries, updates, and

insertion process.
• To handle the most common data-type conversions.
• To Support a combination of databases.

Database Connectivity

There are 5 steps to connect any java application
with the database in java using JDBC. They are
as follows:

• Register the driver class

• Creating connection

• Creating statement

• Executing queries

• Closing connection

Database Programming using JDBC

Required Steps

The following steps are required to create a new Database using JDBC application −
Import the packages: Requires that you include the packages containing the JDBC
classes needed for database programming. Most often, using import java.sql.* will
suffice.
Register the JDBC driver: Requires that you initialize a driver so you can open a
communications channel with the database.
Open a connection: Requires using the DriverManager.getConnection() method to
create a Connection object, which represents a physical connection with the database
server.
To create a new database, you need not give any database name while preparing
database URL as mentioned in the below example.
Execute a query: Requires using an object of type Statement for building and
submitting an SQL statement to the database.
Clean up the environment . Requires explicitly closing all database resources versus
relying on the JVM's garbage collection.

Example
import java.sql.*; // Use classes in java.sql package
public class JdbcSelectTest { // Save as "JdbcSelectTest.java"
public static void main(String[] args) {
 try (
 // Step 1: Allocate a database "Connection" object Connection
 conn = DriverManager.getConnection(
 "jdbc:mysql://localhost:8888/ebookshop", "myuser", "xxxx");
 // MySQL

 // Step 2: Allocate a "Statement" object in the Connection Statement
 stmt = conn.createStatement();
) {

 // Step 3: Execute a SQL SELECT query, the query result
 // is returned in a "ResultSet" object.
 String strSelect = "select title, price, qty from books";
 System.out.println("The SQL query is: " + strSelect);
 // Echo For debugging System.out.println();
 ResultSet rset = stmt.executeQuery(strSelect);

 // Step 4: Process the ResultSet by scrolling the cursor forward via next().
 // For each row, retrieve the contents of the cells with
getXxx(columnName).
 System.out.println("The records selected are:");
 int rowCount = 0;
 while(rset.next()) {
 // Move the cursor to the next row
 String title = rset.getString("title");
 double price = rset.getDouble("price");
 int qty = rset.getInt("qty");
 System.out.println(title + ", " + price + ", " + qty); ++rowCount;
 }
 System.out.println("Total number of records = " + rowCount);
 }
 catch(SQLException ex) {
 ex.printStackTrace();
 }
 // Step 5: Close the resources - Done automatically by try-with-resources
 }
 }

Development of java
beans in JSP

• A java bean is a simple java component which
should satisfy the below mentioned points.

• A java bean should not have any public
variables. All the variables should be accessed
using the getter/setter methods.

• Java bean constructor should be a no
argument constructor. To meet this
requirement better leave the file without
creating any constructor with arguments or
create a no argument constructor explicitly.

Below code fragment is an example of a basic bean.
Listing 1: Course.java - Java Bean
package com.javaBeans;
public class Course {
 private String title;
 private String code;
 public String getTitle() {
 return title;
 }
 public void setTitle(String title) {
 this.title = title;
 }
 public String getCode() {
 return code;
 }
 public void setCode(String code) {
 this.code = code;
 }
 }

How to embed java beans in a JSP file?
 • Java beans can be directly integrated in the jsp page which gives

the user a flexibility to work with java reusable java
components.

• Following JSP standard actions embed the Java bean in a JSP file.
<jsp:useBean>
<jsp:getProperty>
<jsp:setProperty>

• Load Java bean inside a JSP:
To start working with java beans inside a jsppage , first the bean
should be loaded into the page. Once the bean is loaded , the
variable properties of the bean can be accessed.

• Hence to load a bean the standard action is used. The
basic syntax of the action is as follows:

• <jsp:useBean id=”course1” class=”com.Course” />

• Above syntax representation means that “instantiate an
object of the class ‘Course’ , binding it to a variable name
specified in the ‘id’ attribute”

• Writing above syntax in a JSP page creates an object
referencing to the class “Course” and the name of the
object is “course1”.

• <jsp:useBean> has some other attributes which provides
additional benefits when creating a bean object.

• <jsp:useBean> “scope” attribute allows the bean object to
be sharable across the application.

• Depending on the values of the scope attribute , if the bean is
shared and has the same id and scope on the other page, the
same bean object is associated to the other jsp page. The
property values also persist the same when the same object is
associated in different pages .

• If the bean is not sharable or the id and scope are different
<jsp:useBean> instantiates a new object of the class

Working with bean properties
 • After the bean gets loaded into the page, the properties can be accessed using the

following standard actions.
<jsp:getProperty>
<jsp:setProperty>
<jsp:getProperty>

• This standard action accesses a property of the bean to get the value and put inside a

jsp page.
The basic syntax of the <jsp:getProperty> is as follows:
<jsp:getProperty name=”course1” property=”title”/>

• The above syntax tells the compiler to get the value of the variable “title” of the

object “course1”.
The attribute name in the above syntax represents the object created using the action.
The value of the name attribute of the <jsp:getProperty> and the id attribute of the
<jsp:useBean> property should be same to refer to the object created.

• The attribute property holds the name of the any variable of the bean loaded.
To get all the properties of the bean inside the jsp page the syntax of the
<jsp:getProperty> should be
<jsp:getProperty name = “course1” property=”*” />

Introduction to Struts framework

• The Struts Framework is a standard for developing well-architected
Web applications. It has the following features:

• Open source
• Based on the Model-View-Controller (MVC) design paradigm,

distinctly separating all three levels:
– Model: application state
– View: presentation of data (JSP, HTML)
– Controller: routing of the application flow

• Implements the JSP Model 2 Architecture
• Stores application routing information and request mapping in a

single core file, struts-config.xml
• The Struts Framework, itself, only fills in the View and Controller

layers. The Model layer is left to the developer.

All incoming requests are intercepted by the Struts servlet controller. The Struts Configuration
file struts-config.xml is used by the controller to determine the routing of the flow. This flows
consists of an alternation between two transitions:

1.From view to action: A user clicks on a link or submits a form on an HTML or JSP page. The
controller receives the request, looks up the mapping for this request, and forwards it to an
action. The action in turn calls a Model layer (Business layer) service or function.

2. From action to view:After the call to an underlying function or service returns to the action
class, the action forwards to a resource in the View layer and a page is displayed in a web
browser.

• User clicks on a link in an HTML page.
• Servlet controller receives the request, looks up mapping

information in struts-config.xml, and routes to an action.
• Action makes a call to a Model layer service.
• Service makes a call to the Data layer (database) and the

requested data is returned.
• Service returns to the action.
• Action forwards to a View resource (JSP page)
• Servlet looks up the mapping for the requested resource

and forwards to the appropriate JSP page.
• JSP file is invoked and sent to the browser as HTML.
• User is presented with a new HTML page in a web browser.

Struts Components

The Controller
This receives all incoming requests. Its primary function is the mapping
of a request URI to an action class selecting the proper application
module. It's provided by the framework.
The struts-config.xml File
This file contains all of the routing and configuration information for
the Struts application. This XML file needs to be in the WEB-INF
directory of the application.
Action Classes
It's the developer's responsibility to create these classes. They act as
bridges between user-invoked URIs and business services. Actions
process a request and return an ActionForward object that identifies
the next component to invoke. They're part of the Controller layer, not
the Model layer.
View Resources
View resources consist of Java Server Pages, HTML pages, JavaScript
and Stylesheet files, Resource bundles, JavaBeans, and Struts JSP tags.

Struts Components

ActionForms
These greatly simplify user form validation by capturing user data from the
HTTP request. They act as a "firewall" between forms (Web pages) and the
application (actions). These components allow the validation of user input
before proceeding to an Action. If the input is invalid, a page with an error
can be displayed.

Model Components
The Struts Framework has no built-in support for the Model layer. Struts
supports any model components:
JavaBeans
EJB
CORBA
JDO
any other

