
Why software components?
1. Ease design and development

2. Tuning to environment

3. Customization to user app

4. Extensibility

5. Verification and robustness

Why not?

• Configuration is hard
• Performance is bad

– Abstraction barriers
– Poor locality
– Redundant code

• Not reliable
• Not faster

Group Communication

Network

History

• Multicast

• Membership

• CATOCS

• Layers

• Protocols

• ML

• Formal methods

Specification

Concrete (ML)
Implementation

Properties
(English)

code of a layer
logical

predicates

Specification

Abstract Spec

Concrete (ML)
Implementation

Properties
(English)

refinement proof

(I/O Automata)

Abstract IOA specification
of totally ordered multicast

S: array[integer] of message

next: integer

deliv: array[process] of integer

action Multicast(m) { S[next++] := m; }

action Deliver(p, m)

precond: deliv[p] < next && m == S[deliv[p]]

 { deliv[p]++; }

global
state

Layer correctness

abstract FIFO
network spec

abstract Total
Order network

spec

Hickey, Lynch, Van
Renesse, TACAS’99

network + layer == network++

Token layer on each CPU

Stack correctness

Seqno layer

FIFO

total

unreliable

Token layer

For example:

Seqno

Token

Efficiency?

• Ensemble stacks have many layers,
improving clarity, but inefficient.

• 5 optimization techniques:

1. Avoiding (in-line) garbage collection

2. Avoiding marshaling

3. Delaying non-critical message processing

4. Identifying common paths

5. Header compression

A protocol layer is a function!

old state
new state

input event output events

layer

(off-line) partial evaluation

Common Case
Predicate

original code

Specialized
 code

Hacker +
Formal person

NuPrl

layer

Two-phase optimization

Programmer Formal User

code CCP

bypass
function

Off-line On-line

TT TT

Header compaction

T_Data

T_Data
seqno

T_Last

Hash
seqno

• Less space
• Faster processing

Architecture (deliver only)

Network

Application

?

generated
bypass original stack

CCP (e.g., hdr.seq = win.lo)

Transport driver (marshaling, device
independence)

Architecture

Network

Application

?

?

generated
bypass

original stack

CCP

Transport driver (marshaling, device
independence)

Performance

• Three different versions:
1. Original (ORIG)

2. Hand-optimized (HAND)

3. Machine-optimized (MACH)

• 300 MHz UltraSparc/Solaris 2.6

• OCaml 2.0 native code compiler

Code latency (sec)

10 layer 4 layer stack
ORIG MACH ORIG MACH HAND

Down Stack 20 9 13 2 2

+ 4 Down Transport 27 8 6 6
Up Transport 20 7 8 7 6

+ 2 Up Stack 14 8 10 4

Total 81 32 37 19 14

(See paper for CPU cycles and TLB misses)

Lessons learned

1. Design with formalization in mind

2. Use small, but not too small components

3. Use a language with formal semantics

4. Use IOA as a specification language

5. Use formal tool with in-house expertise

Final remarks

• See CD or Web for code samples,
links to all code, as well as how to
reproduce our results

• Still working on a machine-generated
proof of correctness

