Research Opportunity Advanced Aerospace Materials

Five summer placements with BAE SYSTEMS

College Website Design

Communications Officer

First Class BA in Natural Sciences (2001)

MSci in Materials Science and Metallurgy

1st VIII Rowing

College JCR Vice-President

Composites and Coatings Group – Prof. T.W. Clyne

Sandwich Panel (NPL Website)

Metallic Foams:

Aluminium foams Titanium foams

Cross section of a foam strut about 50 μ m wide

Different classes of metal foam produced via different processing routes (Metalfoam.net)

Processes

Open celled foam produced by INFILTRATION Salt moulds, plaster moulds using another foam, electrodeposition

Control, moulding, alloys Expensive, discontinuous, slow

Closed cell foam produced by GAS EVOLUTION Cymat (Alcan) process: froth flotation

Continuous, cheap

6 cm slabs, inhomogeneous, viscosity limits

Alporas process: TiH

Finer pores, uniform distribution More expensive, limited shape

FORMGRIP process; precursor, moulded

Control, moulding, alloys Expensive, discontinuous, slow

Applications

Properties: High strength, low density, high mpt., energy absorption

Structural material

Bending; high moment of inertia = very high specific strength, stiffness High flexural rigidity against similar solid masses Isotropic = shear resistance Sandwich panels, filled pipes, beams

Impact absorber Plastic deformation in walls at low, constant stress; isotropic

Acoustic absorber

Open celled structures, large surface area; closed cell structures

Corrosion resistant, high temperature filters Heat exchangers Fire protection Electrodes Catalyst supports

Other fields

Novel metallic multi-layer composite sheet materials

Good handling, high specific stiffness, acoustic damping, thermal insulation

Sintering

Fibre pull-out

Timescale

- September 2001 Current placement ends
- **October 2001 Enquiries in Cambridge and communication with Samlesbury**
- **December 2001 Make decision on research group**
- January 2002 Apply to research group (with proposal from BAE SYSTEMS?)
- Lent and Easter terms Complete MSci course
- Lent and Easter terms Finalise PhD plan
- Summer 2002 Placement with BAE SYSTEMS?
- **October 2002 Begin PhD**
- ... Research
- September 2005 Finish PhD

Jan 02	Jan 03	Jan 04	Jan 05	Jan 06	