Dronacharya Group of Institutions, Greater Noida Civil Engineering Department
 Question Bank

Subject: Engineering Mathematics-III
Branch:Civil 3 ${ }^{\text {rd }}$ Semester

COMPLEX ANALYSIS

1. State and prove necessary and sufficient condition for $f(z)$ to be analytic (C-R equations).
2. Show that the complex variable function $f(z)=|z|^{2}$ is differentiable only at the origin.
3. Show that the real and imaginary parts of the function $w=\log z$ satisfy the Cauchy - Riemann equations when z is not zero.
4. Show that the function $z|z|$ is not analytic anywhere
5. Show that the function $f(z)=e^{-z^{-4}}, z \neq 0$ and $f(0)=0$ is not analytic at $z=0$ although Cauchy-Riemann equations are satisfied at the point.
6. Show that the function $f(z)$ defined by $f(z)=\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}, z \neq 0$ and $f(0)=0$ is continuous and the Cauchy-Riemann equations are satisfied at the origin. Yet $f^{\prime}(0)$ does not exist.
7. Show that the function defined by $f(z)=\sqrt{|x y|}$ satisfies Cauchy - Riemann equation at the origin but is not analytic at that point.
8. Show that the function $u=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$ is harmonic. Find its harmonic conjugate.
9. Show that the function $x^{2}-y^{2}+2 y$ which is harmonic remains harmonic under the transformation $z=w^{3}$.
10. If \emptyset and φ are functions of x and y satisfying Laplace's equation, show that $\boldsymbol{s}+\boldsymbol{i t}$ is analytic, where $s=\frac{d \emptyset}{d y}-\frac{d \varphi}{d x}$ and $\mathrm{t}=\frac{d \varnothing}{d x}+\frac{d \varphi}{d y}$.
11. Prove that an analytic function with constant modulus is also constant.
12. If $f(z)=u+i v$ is an analytic function of z and $u-v=\frac{\cos x+\sin x-e^{-y}}{2 \cos x-2 \cosh y}$; Prove that $f(z)=\frac{1}{2}\left[1-\cot \frac{z}{2}\right]$ when $f\left(\frac{\pi}{2}\right)=0$.
13. If $f(z)$ is regular function of z, show that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$.
14. Evaluate the line integral $\int_{c} z^{2} d z$ where C is the boundary of z triangle with the vertices $0,1+i,-1+i$ clockwise.
15. State and derive Cauchy integral theorem and derive Cauchy integral formula.
16. Evaluate the integral $\int_{c} \frac{3 z^{2}+7 z+1}{z+1} d z$, where C is the circle $|z|=\frac{1}{2}$ clockwise.
17. Use Cauchy integral formula to evaluate $\int_{c} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)(z-2)} d z$, where C is the circle $|z|=3$.
18. State \& prove Taylor Series and Laurent Series.
19. Expand $\frac{1}{z^{2}-3 z+2}$ in the region (a) $|z|<1$ (b) $|z|>2$ (c) $1<|z|<2$.
20. Find out the zeros and discuss the nature of the singularities of $f(z)=\frac{z-2}{z^{2}} \sin \left(\frac{1}{z-1}\right)$.

21. Show that: $\int_{0}^{2 \pi} \frac{\cos 2 \theta}{5+4 \cos \theta} d \theta=\frac{\pi}{6}$.
22. Apply calculus of residue to prove that: $\int_{0}^{2 \pi} \frac{\cos 2 \theta}{1-2 a \cos \theta+a^{2}} d \theta=\frac{2 \pi a^{2}}{1-a^{2}}\left(a^{2}<1\right)$.
23. Using the complex variable techniques, evaluate the integral
(a) $\int_{-\infty}^{\infty} \frac{d x}{x^{4}+1}$
(b) $\int_{-\infty}^{\infty} \frac{\cos 3 x}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x$
24. Evaluate $\int_{0}^{\infty} \frac{\cos m x}{\left(x^{2}+1\right)} d x$

NUMERICAL TECHNIQUES

1. Discuss the Rate of convergence for the Newton-Raphson method.
2. Use Newton-Raphson method to find the real root (correct to four decimal places) of the following equations:
(a) $x^{4}-x-10=0$ Near $x=2$
(b) $3 x-\cos x-1=0$
3. Use by Newton-Raphon formula to find $\sqrt[3]{18}$ correct to two decimals, assuming 2.5 as the initial approximation.
4. Discuss the Rate of convergence for the Newton Raphson method and Regula-Falsi method.
5. Use Regula-Falsi method to find the real root (correct to four decimal places) of the following
equations:
(a) $x^{3}-5 x-7=0,(2,3)$
(b) $x e^{x}=\cos x,(0,1)$.
6. Use Newton iterative method to find the real root (correct to four decimal places) of the following equations: $\begin{array}{ll}\text { (a) } x \log _{10} x=1.2 & \text { (b) }(48)^{1 / 3} .\end{array}$
7. Prove that the following two sequences, both has convergence of the second order with the same limit $\sqrt{a}, x_{n+1}=\frac{1}{2} x_{n}\left(1+\frac{a}{x_{n}{ }^{2}}\right)$ and $x_{n+1}=\frac{1}{2} x_{n}\left(3-\frac{a}{x_{n}{ }^{2}}\right)$.
8. Define the shift operator, forward and backward difference operators, the central difference operator and the average operator. Establish
$\left(E^{\frac{1}{2}}+E^{-\frac{1}{2}}\right)=2\left(1+\frac{1}{2} \Delta\right)(1+\Delta)^{\frac{1}{2}}$
$\Delta(1+\Delta)^{-\frac{1}{2}}=\nabla(1-\nabla)^{-\frac{1}{2}}$
where, all the above notations have usual meanings.
$\mu=\sqrt{1+\frac{1}{4} \delta^{2}}$
9. Prove that
(a) $\Delta+\nabla=\frac{\Delta}{\nabla}-\frac{\nabla}{\Delta}$
(b) $\Delta^{2}=h^{2} D^{2}-h^{3} D^{3}+\frac{7}{12} h^{4} D^{4}+$.
(c) $h D=\Delta-\frac{\Delta^{2}}{2}+\frac{\Delta^{3}}{3}-\frac{\Delta^{4}}{4} \ldots \ldots \ldots . .$, provided $|\Delta|<1$.
10. Prove that $\left(\frac{\Delta^{2}}{E}\right) e^{x} \cdot \frac{E e^{x}}{\Delta^{2} e^{x}}=e^{x}$, the difference of interval being h.
11. Evaluate $\Delta\left(\frac{2^{x}}{(x+1)!}\right)$.
12. From the following table of half-yearly premium for policies maturing at different ages, estimate the premium for policies maturing at age of 46 .

Age	45	50	55	60	65
Premium(Rs.)	114.84	96.16	83.32	74.48	68.48

13. Estimate the population for 1964 and 1966 from the following data:

x	1961	1962	1963	1964	1965
y	200	$\ldots \ldots$	260	$\ldots \ldots$	350

14. The Population of a city was as given. Estimate the population for the year 1925.

Year	1891	1901	1911	1921	1931
Population (in thousand)	46	66	81	93	101

15. Develop the divided-difference table from the data given below and obtain the interpolation polynomial $f(x)$:

x	1	3	5	7	11
$f(x)$	5	11	17	23	29

Also, find the value of $f(19.5)$.
16. Apply Gauss-Seidal method to find the solution of
(i) $20 x+y-2 z=17,3 x+20 y-z=-18,2 x-3 y+20 z=25$
(ii) $4 x+2 y+13 z=24,3 x+9 y-2 z=11,4 x-4 y+3 z=-8$
17. Use the Crout's method to solve the following system:
(i) $x+y+z=6, x+2 y+3 z=14, x-2 y+3 z=6$
(ii) $x+y+z=1,3 x+y-3 z=5, x-2 y-5 z=10$
18. The table given below reveals the velocity ' v ' of a body during the time t specified. Find its acceleration at $\mathrm{t}=1.1$:

t	1.0	1.1	1.2	1.3	1.4
v	43.1	47.7	52.1	56.4	60.8

19. Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ by taking $h=\frac{1}{6}$, using (i) Simpson's $\frac{1}{3}$ rule (ii) Trapezoidal rule and compare with the exact result.
20. A motorbike starts from rest, its velocity v in $\mathrm{km} /$ hour is given in time t as :

t	2	4	6	8	10	12	14	16	18	20
v	10	18	25	29	32	20	11	5	2	0

Estimate the approximate distance covered by motorbike in 20 minutes.
21. A rocket is launched from the ground. Its acceleration is registered during the first 80 seconds and given in the following table. Using Simpson's $\frac{1}{3}$ rule finds the velocity of the rocket at $t=80$ seconds.

t	0	10	20	30	40	50	60	70	80
$f\left(\mathrm{~cm} / \mathrm{sec}^{2}\right)$	30	31.63	33.34	35.47	37.75	40.33	43.25	46.69	50.67

22. A river is 80 m wide. The depth d of the river at a distance x from one bank is given by the table:

x	0	10	20	30	40	50	60	70	80
d	0	4	7	9	12	15	14	8	3

Find approximately the area of cross-section of the river using Simpson's $\frac{1}{3}$ rule.
23. Using Picard's method of successive approximation $\frac{d y}{d x}=\frac{x^{2}}{y^{2}+1}, \quad y(0)=0$. Obtain $y(0.25), y(0.5) \& y(1)$ correct to three decimal places.
24. Apply Picard's method to find the third approximation of the solution of $\frac{d y}{d x}=x+y^{2}, \quad y(0)=1$
25. Use R-K method of fourth order to find the numerical solution at $x=0.8$ for $\frac{d y}{d x}=\sqrt{x+y}, y(0.4)=0.41$. Assume the step length (0.2).

LINEAR ALGEBRA

1. Show that the vectors $X_{1}=(1,2,3), X_{2}=(3,-1,4)$ and $X_{3}=(4,1,7)$ are linearly dependent.
2. Examine the following vectors for linear dependence and find the relation if it exists. $X_{1}=(1,2,4), X_{2}=(2,-1,3), X_{3}=(0,1,2), X_{4}=(-3,7,2)$.
3. Examine for linear dependence and find the relation if possible. $\mathrm{X} 1=(1,0,2,1), \mathrm{X} 2=(3,1,2,1), \mathrm{X} 3=(4,6,2,-4)$ and $(-6,0,-3,-4)$.
4. Find whether the vectors are linearly dependent or independent. $V_{1}=(1,2,1), V_{2}=(3,1,5), V_{3}=(3,-4,7)$.
5. Prove that the set $\left(1, x, 1+x+x^{2}\right)$ is linearly independent set of the vectors in the vector space of all polynomials over the real number field.
6. Solve if the vector $(2,-5,3)$ in the subspace of $R 3$ spanned by the vectors $(1,-3,2),(2,-4,1)$, ($1,-$ 5,7).
7. Let R be the field of real numbers. Which of the following are the subspaces of $V_{3(R)}$?
(I) $W_{1}=\{(x, 2 y, 3 z): x, y, z \in R\}$
(II) $W_{2}=\{(x, x, x): x \in R\}$
(III) $W_{3}=\{(x, y, z): x, y, z \in R\}$
8. If V is a set of all $(\mathrm{n} \times \mathrm{n}$) matrices over any field F, then a set w of all ($n \times n$) symmetric matrices forms a vector subspace of $V(F)$.
9. Let V be a vector space of all real valued funtions over R . Then show that the solution set W of the differential equation where $y=f(x)$ is a subspace of V.

$$
2 \frac{d^{2} y 1}{d x^{2}}-9 \frac{d y}{d x}+2 y=0
$$

10. Prove that the intersection of two subspaces of a vector space is a subspace of the same but union of two subspaces may not be a subspace.
11. Show that the vectors $(1,0,0),(1,1,0)$ and $(1,1,1)$ form a basis for R^{3}.
12. Show that the set $S=\{(1,0,0),(1,1,0),(1,1,1),(0,1,0)\}$ is not a basis set.
13. Show that the vectors form a basis of $V_{3}(F):\{(1,2,1) .(2,1,0),(1,-1,2)\}$
14. Prove that the vectors $X_{1}=(1,0,-1), X_{2}=(1,2,1), X_{3}=(0,-3,2)$ forms a basis of $V_{3}(R)$.
15. Show that the following vectors form a basis of R_{3}. Express each of the standard basis vectors e_{i}, $i=1,2,3$ as linear combination of the above basis vectors. $S=\{(1,2,1),(2,1,0),(1,-1,2)\}$.
16. Find the coordinate vector $V=(3,-5,2)$ relative to the basis of $e_{1}=(1,1,1), e_{2}=(0,2,3), \quad e_{3}=$ $(0,2,-1)$.
17. If $V_{3}(R)$ is a vector space then show that $S=\{(0,1,-1),(1,1,0),(1,0,2)\}$ is a basis of V_{3} and hence find the coordinates of the vector $(1,0,-1)$ with respect to the basis.
18. Determine the null space for the following matrix : $\left[\begin{array}{cc}-3 & 0 \\ 2 & -4\end{array}\right]$.
19. Determine the basis and null space for the following matrix :
$\left[\begin{array}{rrrrr}1 & 2 & -3 & 2 & -3 \\ 1 & -1 & 1 & -2 & 0 \\ 0 & 1 & -1 & 1 & -1 \\ 1 & 2 & 5 & -6 & -3\end{array}\right]$.
20. Determine a basis for the null space, row space, column space and rank of the matrix.
$\left[\begin{array}{ccccl}1 & 1 & 1 & 3 & 4 \\ 2 & 3 & 2 & 6 & 8 \\ 4 & 7 & 4 & 12 & 16 \\ 5 & 11 & 6 & 15 & 20\end{array}\right]$.
21. Define inner product spaces, orthogonal and orthonormal vectors.
22. Let $X_{1}=(1,2,1), X_{2}=(2,1,4), X_{3}=(3,-2,-1)$ in $R 3$ then,
(i) Show that they form an orthogonal set under the standard Euclidean inner product for R^{3} but not orthonormal set.
(ii) Convert them into the set of vectors that will form an orthonormal set of vectors under the standard Euclidean inner product for R^{3}.
23. State and prove Schwarz Inequality.
24. Construct orthonormal set of vectors form the set :
$X_{1}=(1,2,1), X_{2}=(2,1,4), X_{3}=(4,5,6)$.
25. Let R^{3} have the Euclidean inner product. Use the Gram Schmidt process to transform the basis vector $u_{1}=(1,1,1), u_{2}=(-1,1,0), u_{3}=(1,2,1)$ into orthogonal basis $\left\{v_{1}, v_{2}, v_{3}\right\}$.
26. Obtain the orthogonal basis for P_{2}, the space of all real polynomials of degree atmost 2 , the inner product being defined by $(\mathrm{P} 1, \mathrm{P} 2)=\int_{0}^{1} P 1(t) P 2(t) d t$.
27. Orthonormalise the set of linearly independent vectors $X 1=(1,0,1,1), X 2=(-1,0,-1,1), \quad X 3=$ $(0,-1,1,1)$ of R^{4} with the standard inner product.
28. If $p=p(x)=p_{0}+p_{1} x+p_{2} x^{2}$ and $q=q(x)=q_{0}+q_{1} x+q_{2} x^{2}$, the inner product is defined by $(p, q)=p_{0} q_{0}+p_{1} q_{1}+p_{2} q_{2}$ for the vectors $X_{1}=1+2 x+3 x^{2}, x_{2}=3+5 x+5 x^{2}, X_{3}=2+x+8 x^{2}$.
Find the orthonormal vectors.
