
 Analytic 

Functions 



 Function of a complex variable 

    Let s be a set complex numbers. A function f defined on 

S is a rule that assigns to each z in S a complex number 

w.  
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S 

Complex  

numbers 
f 

S’ 

Complex  

numbers 

z 

The domain of definition of f The range of f 

w 



Suppose that w=u+iv is the value of a function f at z=x+iy, 

so that  

 

Thus each of real number u and v depends on the real 

variables x and y, meaning that   

 

 

Similarly if the polar coordinates r and θ, instead of x and 

y, are used, we get  

            

Functions of a Complex Variable 
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( )u iv f x iy  

( ) ( , ) ( , )f z u x y iv x y 

( ) ( , ) ( , )f z u r iv r  



 Example 2  

      If f(z)=z2, then  

      case #1:  

 

 

       

      case #2:   

 

 

   

   

        

Functions of a Complex Variable 
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2 2 2( ) ( ) 2f z x iy x y i xy    
2 2( , ) ; ( , ) 2u x y x y v x y xy  

z x iy 

i
z re


2 2 2 2 2( ) ( ) cos2 sin 2i i

f z re r e r ir
      

2 2( , ) cos2 ; ( , ) sin 2u r r v r r    

When v=0, f is a real-valued function.  



 Example 3 

   A real-valued function is used to illustrate some important 

concepts later in this chapter is  

 

 Polynomial function 

 

    where n is zero or a positive integer and a0, a1, …an are complex 

constants, an is not 0;       

 Rational function   

      the quotients P(z)/Q(z)  of polynomials   

  

 

Functions of a Complex Variable 
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2 2 2( ) | | 0f z z x y i   

2

0 1 2( ) ... n

n
P z a a z a z a z    

The domain of definition is the entire z plane 

The domain of definition is Q(z)≠0 



 Multiple-valued function  

   A generalization of the concept of function is a rule that 

assigns more than one value to a point z in the domain 

of definition.  

Functions of a Complex Variable 
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f 

S 

Complex  

numbers 

z 

S’ 

Complex  

numbers 

w1 

w2 

wn 



 Example 4 

    Let z denote any nonzero complex number, then z1/2 has 

the two values   

 

 

 If we just choose only the positive value of  

 

 

     

Functions of a Complex Variable 
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1/2 exp( )
2

z r i


  Multiple-valued function 

r

1/2 exp( ), 0
2

z r i r


  Single-valued function 



 Graphs of Real-value functions 

Mappings 

8 

f=tan(x) 

f=ex 

Note that both x and f(x) are real values.  



 Complex-value functions 

Mappings 
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( ) ( ) ( , ) ( , )f z f x yi u x y iv x y   

x 

y 

u 

v 

Note that here x, y, u(x,y) and v(x,y) are all real values.  

z(x,y) w(u(x,y),v(x,y)) 

mapping 



 Examples  

Mappings 
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1 ( 1)w z x iy    

x 

y 

z(x,y) 

u 

v 

w(x+1,y) 

w z x yi  

u 

v 

w(x,-y) 

Translation Mapping 

Reflection  Mapping 

y 

z(x,y) 



 Example  

Mappings 
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( ) exp( ( ))
2

i
w iz i re r i

    

y 

r 

θ 

z 

u 

v 

r 

θ 

w 

2



Rotation Mapping 



 Example 1  

     

Mappings 
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2
w z 2 2 , 2u x y v xy  

Let u=c1>0 in the w plane, then x2-y2=c1 in the z plane 

Let v=c2>0 in the w plane, then 2xy=c2 in the z plane 



 Example 2 

    The domain x>0, y>0, xy<1 consists of all points lying on 

the upper branches of hyperbolas    

Mappings 
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x=0,y>0 

x>0,y=0 

2 2;

2 2 1

u x y

v xy xy

 
   



 Example 3  

     

Mappings 
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2 2 2i
w z r e

  In polar coordinates 



 The exponential function 

      

Mappings by the Exponential Function 
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,z x iy x iy
w e e e e z x iy

    

ρeiθ ρ=ex, θ=y 



 Example 2 

Mappings by the Exponential Function 
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w=exp(z) 



 Example 3 

Mappings by the Exponential Function 

17 

w=exp(z)=ex+yi 



 For a given positive value İ, there exists a positive value į 

(depends on İ) such that   

          when   0 < |z-z0| < į,  we have |f(z)-w0|< İ  

meaning the point w=f(z) can be made arbitrarily chose to w0 

if we choose the point z close enough to z0 but distinct from 

it. 

         

 

Limits 
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0
0lim ( )

z z
f z w






 The uniqueness of limit 

    If a limit of a function f(z) exists at a point z0, it is unique.  

Proof:  suppose that  

 then 

 when                          

 

Let                        , when 0<|z-z0|<į, we have  

Limits 
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0 0
0 1lim ( ) & lim ( )

z z z z
f z w f z w

 
 

0 1/ 2 0, 0, 0       

1 0 0 1| | | ( ( ) ) ( ( ) ) |w w f z w f z w     

0 1| ( ) | | ( ) |
2 2

f z w f z w
        

0 1min( , )  

0| ( ) | / 2;f z w  0 00 | |z z   

1| ( ) | / 2;f z w  0 10 | |z z   



 Example 1 

    Show that                  in the open disk |z|<1, then   

 

    Proof:  

Limits 

20 

( ) / 2f z iz

1
lim ( )

2z

i
f z




| || 1| | 1|
| ( ) | | |

2 2 2 2 2

i iz i i z z
f z

 
    

0, 2 , . .s t     

0 | 1| ( 2 )z     when 

| 1|
0 | ( ) |

2 2

z i
f z 

     



 Example 2 

    If               then the limit             does not exist.   

Limits 
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( )
z

f z
z


0

lim ( )
z

f z


0

0
lim 1

0x

x i

x i





( ,0)z x

(0, )z y
0

0
lim 1

0y

iy

iy


 



≠ 



 Theorem 1 

    Let                                         

     and    

     then   

 

     if and only if       
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0
0lim ( )

z z
f z w




0 0
0

( , ) ( , )
lim ( , )

x y x y
u x y u




0 0
0

( , ) ( , )
lim ( , )

x y x y
v x y v




( ) ( , ) ( , )f z u x y iv x y  z x iy 

0 0 0 0 0 0;z x iy w u iv   

and  

(a) 

(b) 



 Proof: (b)(a)        

Theorems on Limits 
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0 0
0

( , ) ( , )
lim ( , )

x y x y
u x y u




0 0
0

( , ) ( , )
lim ( , )

x y x y
v x y v


& 

0
0lim ( )

z z
f z w




1 2/ 2 0, 0, 0 . .s t       

0| ( , ) |
2

u x y u


 When  2 2

0 0 10 ( ) ( )x x y y     

2 2

0 0 20 ( ) ( )x x y y      0| ( , ) |
2

v x y v


 

1 2min( , )  Let 2 2

0 0 00 ( ) ( ) , . .0 | |x x y y i e z z        When  

0 0 0| ( ) | | ( ( , ) ( , )) ( ) |f z w u x y iv x y u iv    

0 0| ( , ) | | ( , ) |
2 2

u x y u v x y v
        

0 0| ( , ) ( ( , ) ) |u x y u i v x y v   



 Proof: (a)(b) 

Theorems on Limits 
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0 0
0

( , ) ( , )
lim ( , )

x y x y
u x y u




0 0
0

( , ) ( , )
lim ( , )

x y x y
v x y v


& 

0
0lim ( )

z z
f z w




0, 0 . .s t    
0| ( ) |f z w  When  00 | |z z   

0 0 0| ( ) | | ( , ) ( , ) ( ) |f z w u x y iv x y u iv    

0 0| ( ( , ) ) ( ( , ) ) |u x y u i v x y v     

Thus  0 0| ( , ) | ;| ( , ) |u x y u v x y v    

0 0 0| ( , ) | | ( ( , ) ) ( ( , ) ) |u x y u u x y u i v x y v      

0 0 0| ( , ) | | ( ( , ) ) ( ( , ) ) |v x y v u x y u i v x y v      

When  (x,y)(x0,y0) 



 Theorem 2  

    Let                        and 

   

    then  
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0
0lim ( )

z z
f z w




0
0lim ( )

z z
F z W




0
0 0lim[ ( ) ( )]

z z
f z F z w W


  

0
0 0lim[ ( ) ( )]

z z
f z F z w W




0

0
0

0

( )
lim[ ] , 0

( )z z

wf z
W

F z W
 



 

     

Theorems on Limits 

26 

( ) ( , ) ( , ), ( ) ( , ) ( , )f z u x y iv x y F z U x y iV x y   

0 0 0 0 0 0 0 0 0; ;z x iy w u iv W U iV     

( ) ( ) ( ) ( )f z F z uU vV i vU uV   

Let  

0
0lim ( )

z z
f z w




0
0lim ( )

z z
F z W




When (x,y)(x0,y0);  

u(x,y)u0; v(x,y)v0; & U(x,y)U0; V(x,y)V0;  

0 0 0 0( )u U v VRe(f(z)F(z)): 

0 0 0 0( )v U u VIm(f(z)F(z)): 
w0W0 

0
0 0lim[ ( ) ( )]

z z
f z F z w W




0
0lim ( )

z z
f z w




0
0lim ( )

z z
F z W


& 
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0

lim
z z

c c



0

0lim
z z

z z



0

0lim ( 1,2,...)n n

z z
z z n


 

2

0 1 2( ) ... n

n
P z a a z a z a z    

It is easy to verify the limits  

For the polynomial 

0
0lim ( ) ( )

z z
P z P z




We have that  



 Riemannsphere & Stereographic Projection 

Limits Involving the Point at Infinity 
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N: the north pole  



 The İ Neighborhood of Infinity   

Limits Involving the Point at Infinity 
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O x 

y 

R1 

R2 

When the radius R is large enough 

i.e. for each small positive number İ 

R=1/İ 

The region of |z|>R=1/İ is called the  

İ Neighborhood of Infinity(∞) 



 Theorem  

   If z0 and w0 are points in the z and w planes, 

respectively, then   

Limits Involving the Point at Infinity 
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0

lim ( )
z z

f z


  iff 

0

1
lim 0

( )z z f z


0lim ( )
z

f z w


 iff 
0

0

1
lim ( )
z

f w
z


lim ( )
z

f z


  iff 
0

1
lim 0

1
( )

z

f
z






 Examples  

   

Limits Involving the Point at Infinity 
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 Continuity 

    A function is continuous at a point z0 if  

 

   meaning that   

1. the function f has a limit at point z0  and  

2. the limit is equal to the value of f(z0)  

 

 

Continuity 
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0
0lim ( ) ( )

z z
f z f z




For a given positive number İ, there exists a positive number į, s.t.  

0| |z z  When  
0| ( ) ( ) |f z f z  

00 | | ?z z   



 Theorem 1 

     A composition of continuous functions is itself continuous. 

Continuity 
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Suppose  w=f(z) is a continuous at the point z0;  
                 g=g(f(z)) is continuous at the point f(z0) 

Then the composition g(f(z)) is continuous at the point z0 



 Theorem 2 

     If a function f (z) is continuous and nonzero at a point z0,   

then f (z) ≠ 0 throughout some neighborhood of that point.  

Continuity 
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Proof   
0

0lim ( ) ( ) 0
z z

f z f z


 

0| ( ) |
0, 0, . .

2

f z
s t     

0| |z z  When  

0
0

| ( ) |
| ( ) ( ) |

2

f z
f z f z   

f(z0) 
f(z) 

If f(z)=0, then  
0

0

| ( ) |
| ( ) |

2

f z
f z 

Contradiction! 

0| ( ) |f z 

Why? 



 Theorem 3 

   If a function f is continuous throughout a region R that is 

both closed and bounded, there exists a nonnegative real 

number M such that  

 

 

 where equality holds for at least one such z.  

   

Continuity 
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| ( ) |f z M for all points z in R 

2 2| ( ) | ( , ) ( , )f z u x y v x y Note:  

where u(x,y) and v(x,y) are continuous real functions  



 Derivative  

   Let f be a function whose domain of definition contains 

a neighborhood |z-z0|<İ of a point z0. The derivative of f 

at z0 is the limit   

 

And the function f is said to be differentiable at z0 when 

f’(z0) exists.  

Derivatives 
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0

0
0

0

( ) ( )
'( ) lim

z z

f z f z
f z

z z








 Illustration of Derivative  

Derivatives 
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0 0
0

0

( ) ( )
'( ) lim

z

f z z f z
f z

z 

 




0
lim
z

dw w

dz z 






0 0( ) ( )w f z z f z   

0

0
0

0

( ) ( )
'( ) lim

z z

f z f z
f z

z z






O u 

v 

f(z0) 

f(z0+Δz) 

Δw 

0z z z 

Any position 



 Example 1  

    Suppose that f(z)=z2. At any point z  

 

 

 

 

 since 2z + Δz is a polynomial in Δz. Hence dw/dz=2z or f’(z)=2z.  

 

Derivatives 
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2 2

0 0 0

( )
lim lim lim(2 ) 2
z z z

w z z z
z z z

z z     

  
   

 



 Example 2 

    If f(z)=z, then   

  

   

 Derivatives 
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w z z z z z z z

z z z z

     
  

   

Case #1: Δx0, Δy=0 

( , ) (0,0)z x y     In any direction 

O Δx 

Δy 

Case #1 

Case #2 

0

0
lim 1

0x

z x i

z x i 

  
 

  

Case #2: Δx=0, Δy0 

0

0
lim 1

0x

z i y

z i y 

  
  

  

Since the limit is unique, this function does not exist anywhere 



 Example 3 

    Consider the real-valued function f(z)=|z|2. Here  

Derivatives 
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2 2| | | | ( )( )w z z z z z z z zz z
z z z

z z z z

      
    

   

Case #1: Δx0, Δy=0 

0 0

0
lim( ) lim( )

0x x

z x i
z z z z x z z z

z x i   

  
      

  

Case #2: Δx=0, Δy0 

0 0

0
lim( ) lim( )

0y y

z i y
z z z z i y z z z

z i y   

  
       

  

0z z z z z     dw/dz can not exist when z is not 0 



 Continuity & Derivative  

    Continuity          Derivative 

 

 

    Derivative          Continuity  

Derivatives 
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For instance,  

f(z)=|z|2 is continuous at each point, however, dw/dz does not exists when z is not 0  

0 0 0

0
0 0 0

0

( ) ( )
lim[ ( ) ( )] lim lim( ) '( )0 0
z z z z z z

f z f z
f z f z z z f z

z z  


    



Note: The existence of the derivative of a function at a point implies the continuity  

of the function at that point.  



 Differentiation Formulas  

Differentiation Formulas 
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[ ( ) ( )] '( ) '( )
d

f z g z f z g z
dz

  

[ ( ) ( )] ( ) '( ) '( ) ( )
d

f z g z f z g z f z g z
dz

    

2

( ) '( ) ( ) ( ) '( )
[ ]

( ) [ ( )]

d f z f z g z f z g z

dz g z g z

  


1[ ]n nd
z nz

dz



0; 1; [ ( )] '( )
d d d

c z cf z cf z
dz dz dz

  

( ) ( ( ))F z g f z

0 0 0'( ) '( ( )) '( )F z g f z f z

dW dW dw

dz dw dz


Refer to pp.7 (13) 



 Example  

    To find the derivative of (2z2+i)5, write w=2z2+i and 

W=w5. Then  

Differentiation Formulas 
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2 5 4 2 4 2 4(2 ) (5 ) ' 5(2 ) (4 ) 20 (2 )
d

z i w w z i z z z i
dz

     



 Analytic at a point z0 

   A function f of the complex variable z is analytic at a 

point z0 if it has a derivative at each point in some 

neighborhood of z0.   

 

 

 Analytic function 

    A function f is analytic in an open set if it has a 

derivative everywhere in that set.   

 

Analytic Function 
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Note that if f is analytic at a point z0, it must be analytic at each 

point in some neighborhood of z0 

Note that if f  is analytic in a set S which is not open, it is to be 

understood that f is analytic in an open set containing S.  



 Analytic vs. Derivative  

   For a point  

              Analytic  Derivative  

              Derivative Analytic 

 

   For all points in an open set   

               Analytic  Derivative  

               Derivative Analytic 

    

Analytic Function 
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f is analytic in an open set D  iff  f is derivative in D 



 Singular point (singularity) 

   If function f fails to be analytic at a point z0 but is analytic at 

some point in every neighborhood of z0, then z0 is called a 

singular point.  

For instance, the function f(z)=1/z is analytic at every point in the 

finite plane except for the point of (0,0). Thus (0,0) is the 

singular point of function 1/z.   

 Entire Function  

    An entire function is a function that is analytic at each point 

in the entire finite plane.  

For instance, the polynomial is entire function.  

Analytic Function 

46 



 Property 1 

    If two functions are analytic in a domain D, then  

  their sum and product are both analytic in D 

  their quotient is analytic in D provided the function in the 

denominator does not vanish at any point in D  

 

 Property 2 

    From the chain rule for the derivative of a composite function, a 

composition of two analytic functions is analytic.  
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( ( )) '[ ( )] '( )
d

g f z g f z f z
dz





 Theorem  

   If f ’(z) = 0 everywhere in a domain D, then f (z) must be 
constant throughout D.   
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( )
du

gradu U
ds


x=u

y
gradu i u j

0& 0
x y x y

u u v v   

'( ) 0
x x y y

f z u iv v iu    

U is the unit vector along L 



Example z2 is Analytic 

  2
f z z

z x i y 

2 2 2x y i x y   u i v 

 

2 2

2

u x y

v x y

 


2
u

x
x





 

v

y





2
u

y
y


 


v

x


 



 f  exists & single-valued  finite z. 

i.e.,   z2 is an entire function. 



Example: z* is Not Analytic 
z x i y 

  *f z z x i y   u iv 

 
u x

v y


 

1
u

x





 1

v

y


  


0

u

y





v

x


 



 f  doesn’t exist  z,  even though it is continuous every where. 

i.e.,   z2 is nowhere analytic. 



 Example  

    Suppose that a function                               and its 

conjugate                                 are both analytic in a 

given domain D. Show that f(z) must be constant 

throughout D.  
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( ) ( , ) ( , )f z u x y iv x y 

( ) ( , ) ( , )f z u x y iv x y 

( ) ( , ) ( , )f z u x y iv x y  is analytic, then  

,
x y y x

u v u v  ( ) ( , ) ( , )f z u x y iv x y  is analytic, then  Proof:  

,
x y y x

u v u v  

0, 0
x x

u v  '( ) 0
x x

f z u iv  

Based on the Theorem in pp. 74, we have that f is constant throughout D 



 Example  

     Suppose that f is analytic throughout a given region D, and 

the modulus |f(z)| is constant throughout D, then the 

function f(z) must be constant there too.  

Proof:  

                         |f(z)| = c,      for all z in D 

where c is real constant.  

If c=0, then f(z)=0 everywhere in D. 

If c ≠ 0, we have  
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2( ) ( )f z f z c
2

( ) , ( ) 0
( )

c
f z f z inD

f z
 

Both f and it conjugate are analytic, thus f must be constant in D. (Refer to Ex. 3)  



 Lemma  

   Suppose that  

a) A function f is analytic throughout a domain D;  

b) f(z)=0 at each point z of a domain or line segment 

contained in D.  

Then f (z) ≡ 0 in D; that is, f (z) is identically equal to zero 
throughout D. 
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Refer to Chap. 6 for the proof.  



 Theorem  

   A function that is analytic in a domain D is uniquely 

determined over D by its values in a domain, or along a 

line segment, contained in D.       

Uniquely Determined Analytic Function 
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f(z) 

D 

g(z) 

D 

( ) ( )f z g z



 Theorem  

    Suppose that a function f is analytic in some domain D 

which contains a segment of the x axis and whose lower 

half is the reflection of the upper half with respect to that 

axis. Then 

 

for each point z in the domain if and only if f (x) is real for 

each point x on the segment. 

Reflection Principle  
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x 

y 

D 

( ) ( )f z f z


