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Functions of a Complex Variable

= Function of a complex variable

Let s be a set complex numbers. A function f defined on
S 1s a rule that assigns to each z in S a complex number
w.

Complex \

Complex
numbers f

numbers

----------------

 The domain of definition of f : The range of f



Functions of a Complex Variable

Suppose that w=u+1v 1s the value of a function f at z=x+1y,
so that
u+iv=f(x+iy)

Thus each of real number u and v depends on the real
variables x and y, meaning that

J (@) =ulx, y)+iv(x, y)

Similarly if the polar coordinates r and 0, instead of x and
y, are used, we get

f(2)=u(r,0)+iv(r,0)



Functions of a Complex Variable

= Example 2
If f(z)=z2, then

case #1: z=x+1iy

When v=0, f is a real-valued function.

f(@)=(x+iy)’ =x"—y° +i2xy
= u(x,y) =X — ¥ iv(x, y) =2y

case #2: ;= e

f(2)=re®) =r'e”’ =r’cos20+ir’ sin20

—> u(r,0) = r* cos 20:v(r, 0) = r* sin 26



Functions of a Complex Variable

= Example 3

A real-valued function is used to 1llustrate some important
concepts later in this chapter 1s

()= zP= x> +y* +i0
= Polynomial function
P(z)=a,+az+a,z" +..+az"

where n 1s zero or a positive integer and a,, a,, ...a, are complex

constants, a is not Q;The domain of definition is the entire z plane

= Rational function

the quotients P(z)/Q(z) of polynomials
The domain of definition is Q(z)#0
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Functions of a Complex Variable

= Multiple-valued function

A generalization of the concept of function is a rule that
assigns more than one value to a point z in the domain
of definition.

Complex

Complex
numbers f

numbers




Functions of a Complex Variable

= Example 4

Let z denote any nonzero complex number, then z!/2 has
the two values

0

1/2 .
7 == reXp(l 5) Multiple-valued function

If we just choose only the positive value of i\ﬁ

.0
Zl/2 = \ﬁexp(z 5), r > (0 Single-valued function



Mappings

= Graphs of Real-value functions

(0, 1)

Note that both x and f(x) are real values.

f=e*



Mappings

= Complex-value functions
f(2)= f(x+yi)=u(x,y)+iv(x, y)

mapping

.,
e
.
.
.

e,
N
.,
e
LN
LN
.,
.
.

Note that here X, y, u(x,y) and v(x,y) are all real values.



Mappings

= Examples
y \Y
, e ®
w=z+1=(x+1)+iy Z(X,y) w(x+1,y)
Translation Mapping
X u
y Y
W=7 = x— Vi 9 2(X,y)
=Z=X—W &
Reflection Mapping
“‘ : .W(X!_Y)
-
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Mappings
= Example

VR . T
w=iz=i(re”) =rexp(i(6+ 5)) Rotation Mapping
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Mappings

= Example 1

2 2 2
w=z" u=x -y ,v=2xy

Let u=c,>0 in the w plane, then x2-y?=c, in the z plane

Let v=c,>0 in the w plane, then 2xy=c, in the z plane

i g

)

u=cy >0

s
/ \

\
\
\
1
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Mappings

= Example 2

The domain x>0, y>0, xy<1 consists of all points lying on
the upper branches of hyperbolas .,
u=x" -y,

v=2xy=2=xy=1

A

x=0,y>0 |\

e e o o s
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Mappings

= Example 3

2 2 26 i
w=z" =re In polar coordinates
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Mappings by the Exponential Function

= The exponential function

Z X+i x z .
w=e" =" =ieg*e”, z=x+1y
g
pe"® p-ex By
v )
X = Cl

-
1— £
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Mappings by the Exponential Function

= Example 2

w=exp(z)
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Mappings by the Exponential Function

= Example 3
y v ,
i //
//
___________ dei
/ \d) i
O X O
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Limits

= For a given positive value €, there exists a positive value 0
(depends on €) such that

when 0 <lz-z)l <0, we have l{(z)-wyl< ¢

meaning the point w=f(z) can be made arbitrarily chose to w,,
if we choose the point z close enough to z, but distinct from
it.

y v
7T TN h_)mf(z):wo
/ Fos Yol
oW
B ‘\m M‘./)
0
[ :OO/—\] \\ //
\ ®/ ~—-
O S’ X O\ u
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Limits

The uniqueness of limit
If a limit of a function {(z) exists at a point z0, it 1S unique.
Proof: suppose that lim f(z) =w, & lim f(z) =w,

= >3

then Ve/2>0,39,>0,30, >0
when 0dz-z k=) | f(2)—-w,lke/2;
O0<dz—z ko, —> |f(2)-wlkel2;
Let 6=min(5),0,) , when 0<lz-z,l<0, we have
=lw, —w, H(f(2)—w,)—(f(2)—w)I
E &

Df@-wy I+ @) -w <o+ =e
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Limits

= Example 1
Show that £(z)=iz/2in the open disk Izl<1, then

: i
lzlgllf(Z) =5

Proof: _
i [ lillz=11 1z-1I
| (z ——| 2t -
7(2) 2 2 2 2
Ve>0,30 =2¢,s.. y y
when 0<lz—1kk (= 2¢ AT
< ( ) // y \\ /rL‘i» (‘é"./\);"“f(:)
I / o U \\ e
| z—11 ] ‘ Ol T lox 18] 1
—0< Z2 <5:>If(z)—%l<5 @
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Limits

= Example 2

If f(z)==
<

=(x,0)

z=(@0,y)

then the limit hg(}f (z) does not exist.

x+10

lim
x—0 X — lO

=

O+ly

lim
=0 0—1iy

=1

21



Theorems on Limits

* Theorem 1

Let f(2)=u(x,y)+iv(x,y) z=x+1y

and <y :xo+iy0;wo :u0+iv0

then .
lim f(z) =w, (a)
if and only 1f
Iim  u(x,y)=u, and Iim  v(x,y) =y, (b)

(X,y)—>(x0,y0) (x’y)_>(x0’y0)
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Theorems on Limits

= Proof: (b)=>(a)

Iim u(x,y)=u, & im v(x,y)=v lim f(z)=w
(x, ) =>(X9,0) ( y) 0 (x,y)—>(xo,yo)( }7) 0 :> 0

>3

Vel2>0,30, >0,30, > O0s.1.

When O<\/(x—x0)2+(y—yo)2<51 —> uCx, y) — ity 1< =

O<\/(X—Xo)2+(y—y0)2 <52 — |v(x,y)—v0|<g

Let 0 =min(5,,5,) When O<\/(x—x0)2+(y—y0)2 <0,iel0<lz—2z,Ik&8
| f(2)—w, I (u(x, y)+iv(x, y)—(u, +ivy) | su(x,y)—u, +i(v(x,y)—v,)|

E &
u(x,y)—uy |l +lv(x,y) -y, K =+—==¢
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Theorems on Limits

= Proof: (a)=2(b)

limf(z)=w, =y lim u(x,y)=u, & lim v(x,y)=v,

Z_)ZO (x’y)_>(x0’y0) (xay)—>(x0’y0)

Ve>0,36>0ss. When O0<lz—z kd = |f(2)-w ke
| f(2)—w, Hul(x,y)+iv(x,y)—(u, +iv,) |
= (u(x,y)—u,)+i(v(x,y)—v,) < ¢
lu(x, y)—u, 1< (ux, y) —u)) +iv(x, y) —v,) I< &

lv(x, y)—v, Il (u(x, y)—uy)) +i(v(x,y)—vy) < &

Thus lu(x, y)—u,l< glvix,y)—v, Ik &
When (x,y)=2(Xq,Yo)

24



Theorems on Limits

" Theorem 2
[et limf(z)=w, and ILmF(z)=W,

Z—)ZO Z—)ZO

then im[f(z)+ F(z)]=w,tW,

7>

lim[ f (2)F(2)]=w,W,

Z_)ZO

lim[L 2= %0 g 0
7 F(Z) WO
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Theorems on Limits

lim f(z)=w, & limF(z)=W, =y lImlf(F(2)]=wW,

>3 >3

Let (D) =ulx, y)+iv(x,y), F(2) =U(x, y)+iV(x, y)
Zy = X +iy0;wo =U, +iv0;% :Uo +iV0

f(DF(2)=WU—-vV)+i(vU +uV)

Im f(z)=w
77 f( ) 0 When (X,y)=2 (X0,Y0);
. u(x,y)2uy; v(x,y)2vy & Ux,y)2Uy; V(X,y)2V,;
lim F(z) =W,
Z_)ZO

N

Re(f(z2)F(z)): (MOU 0o VOVO)
woW,

Im(f(z)F(z)): (V,U, +u,V,)
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Theorems on Limits

It 1s easy to verify the limits

limec=c lim z = z, limz" =z (n=1,2,...

For the polynomial

P(z)=a,+az+a,z’ +..+a,z"
We have that

lim P(z) = P(z,)

Z_)ZO
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Limits Involving the Point at Infinity

= Riemannsphere & Stereographic Projection

N: the north pole

28



Limits Involving the Point at Infinity

= The € Neighborhood of Infinity

Ay

N

When the radius R is large enough

i.e. for each small positive number ¢
R=1/¢

The region of |z|>R=1/¢ is called the
€ Neighborhood of Infinity()
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Limits Involving the Point at Infinity

* Theorem

If z, and w, are points in the z and w planes,
respectively, then

lim f(z)=00  iff  lim—— =0
i3 2 f(Z)

imf()=w, 1 lim () =w,
<

L0 z—0
1

=0
r
<

lim f(z) = iff  lim

Z—>00 z—0
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Limits Involving the Point at Infinity

= Examples
. iz4+3 , . g+l
lim = 00 since lim - =()
——1 74+ 1 —»—-1i7+3
274 . @2/ +i . 24z
lim — 72 since lim * — lim = 2.
z—00 741 —=0(1/z7)+1 0147z
. , AT O I T
lim — o0 since lim — lim = (),
1>00 72 1 1 >0 (2/z23)—1 z502-723
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Continuity

= Continuity

A function 1s continuous at a point z if

Iim f(2) = f(zy)

Z—>ZO

meaning that
|. the function f has a limit at point z, and

2. the limit 1s equal to the value of 1(z)

For a given positive number €, there exists a positive number 9, s.t.

When |lz—2z,I<0 | f(2)—f(z) ke
O0<lz—z,l06?

32



Continuity

* Theorem 1
A composition of continuous functions is itself continuous.

Suppose w=f(z) is a continuous at the point z;
9=g(f(z)) is continuous at the point f(z,)

Then the composition g(f(z)) is continuous at the point z,

33



Continuity

* Theorem 2

If a function f (z) 1s continuous and nonzero at a point z,,
then f (z) # 0 throughout some neighborhood of that point.

Proof lim f(Z) — f(Zo) # 0

.................
.....

Why?
| f(z,) | 2
Ve = % >0,36 >0,s.1.

wns
ws®
wet®
e
.
.
.
o
.

S
@ fake=LE) -
| |
If (z)=0, then | f(z,)I< f(zzo) Ved f(z,)]

Contradiction!

34



Continuity

Theorem 3

If a function f 1s continuous throughout a region R that 1s
both closed and bounded, there exists a nonnegative real
number M such that

| f(Z) <M for all points z in R

where equality holds for at least one such z.

Note: | f(2)I= \/uz(x, y)+vi(x,y)

where u(x,y) and v(x,y) are continuous real functions
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Derivatives

Derivative

Let f be a function whose domain of definition contains
a neighborhood Iz-z,l<¢ of a point z,. The derivative of {
at z, 1s the limit _

0 £(z,)=lim ()= f(z,)

=2y Z — ZO

And the function f 1s said to be differentiable at z, when
(z,) exists.

36



Derivatives

= [llustration of Derivative

-“' o Any position
f'(z,)=1lm J(2)= ] () ,// i\\
R <~ < ! Sy
f'(ZO): lim f(ZO +AZ)_f(Z0) 0¥ NE, s
Az—0 AZ . x
f(zg+A
Aw= f(z,+Az)— f(z,) .
dw . Aw -
—=lim —
dZ Az—0 M S :
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Derivatives

= Example 1
Suppose that f(z)=z. At any point z

2 2
lim 2Y = fim A 72 024 A7) =22
Az—0 Az Az—0 Az Az—0

since 2z + Az is a polynomial in Az. Hence dw/dz=2z or ’(z)=2z.

38



Derivatives

= Example 2
If f(z)=z, then Aw_ZzfAzzz_ztdAzzz Az
Az Az Az Az
Az = (Ax,Ay) — (0,0) In any direction Ay
(ase #2
Case #1: Ax>0,Ay=0 i
‘1“ Case #1
Az —i AN
lim 22 - A =10 LN
o0 Az Ax+i0 : -
Case #2: Ax=0, Ay->0
Em Az _0—iAy __q
a0 Az O+iAy

Since the limit is unique, this function does not exist anywhere
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Derivatives

= Example 3

Consider the real-valued function f(z)=IzI>. Here

Aw_lz+AzI2—Iz|2_(z+&)(2+&)—zg - — Az
= = =Z7+Az+z7—
Az Az Az Az

Case #1: Ax=20, Ay=0
Az Ax—i0_ -

hm(z+Az+Z§)—hm(z+Ax+z )=27+2

Ax—0 Az Ax+10

Case #2: Ax=0, Ay—=>0

0—-iAy, -

hm(z+Az+zg)—hm(z—sz+z —~)=27z—2
Ay—0 Az 0+iAy
2+z=72—-72=>2=0 dw/dz can not exist when z is not 0

40



Derivatives

= Continuity & Derivative
Continuity% Derivative

For instance,
f(z)=IzI* is continuous at each point, however, dw/dz does not exists when z is not 0

Derivative /> Continuity

lim[ f(2)— £ (z,)] = lim L2 G0) ooy~ pz)0=0

Vo ) Yo ) Z —_ ZO Vo )

Note: The existence of the derivative of a function at a point implies the continuity
of the function at that point.

41



Differentiation Formulas

= Differentiation Formulas

d d . d Y
d_ZC = O,d—ZZ — 1, dv [Cf(Z)] - Cf (Z)
F(2)=g(f(2)
di[zn] =nz"" Referto pp.7 (13) F'(z)) =8 '(f(z))f (zy)
Z
) dw _ dw dw
d—Z[f(z)i g()]=f(2)xg(2) dz dw dz

diz[ F(Deg@)]=f(2)eg'(D)+f'(2)eg(2)

d J(2),_J(2)e8(2)=/(2)eg(2)
dz " g(z) [g(2)T

42



Differentiation Formulas

= Example

To find the derivative of (2z2+i)°, write w=2z2+i and
W=w>. Then

di (22" +i) = (SwHw'=5(2z° +1)"(42) =202(22" +1)°
<

43



Analytic Function

= Analytic at a point z,,

A function f of the complex variable z 1s analytic at a
point z, it it has a derivative at each point in some
neighborhood of z,,.

Note that if f1s analytic at a point z,, it must be analytic at each
point in some neighborhood of z,

= Analytic function
A function { 1s analytic 1n an open set if 1t has a
derivative everywhere in that set.

Note that if f 1s analytic 1n a set S which 1s not open, it is to be
understood that f'1s analytic in an open set containing S.
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Analytic Function

= Analytic vs. Derivative

» For a point

Analytic =» Derivative\/
Derivative =» Analytic x

» For all points in an open set
Analytic =» Derivative\/
Derivative =» Analytic

f 1s analytic in an open set D iff f is derivative in D

45



Analytic Function

= Singular point (singularity)

If function f fails to be analytic at a point z, but 1s analytic at
some point in every neighborhood of z,, then z, 1s called a
singular point.

For instance, the function f(z)=1/z 1s analytic at every point in the

finite plane except for the point of (0,0). Thus (0,0) 1s the
singular point of function 1/z.

= Entire Function

An entire function is a function that 1s analytic at each point
in the entire finite plane.

For instance, the polynomial 1s entire function.
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Analytic Function

= Property 1
If two functions are analytic in a domain D, then

» their sum and product are both analytic in D

» their quotient is analytic in D provided the function in the
denominator does not vanish at any point in D

= Property 2

From the chain rule for the derivative of a composite function, a
composition of two analytic functions 1s analytic.

4 e(F(2) =g TfDIf (@)
dz

47



Analytic Function

* Theorem

If £ ’(z) = 0 everywhere in a domain D, then f (z) must be
constant throughout D.

f'(@)=u_+iv, =v, —iu, =0
u, =u,=0&v, =v, =0

du
E = (gradu) U gradu=u i +u,j

- —

U is the unit vector along L

48



Example zis Analytic

Z=Xx+1y
_ 22 o
u=x-y. o Qu_, _0v ou_ 5y v
v:2xy O x 6)’ 8)7 0 X

. f"exists & single-valued V finite z.

i.e., z?is an entire function.



Example: z*is Not Analytic

Z=Xx+1y
f(z)=z*=x—iy =u+iv
u=x
N ou _ 1, __9v ou_o-_9v
v=-) 0 x oy 0y 0 X

. f' doesn’t exist V z, even though it is continuous every where.

l.e., z?Iis nowhere analytic.



Examples

= Example

Suppose that a function /(2) =u(x, y)+iv(x, y) and its
conjugatef(z) =u(x,y)—iv(x,y)  are both analytic in a
given domain D. Show that £(z) must be constant
throughout D.

Proof: f(z)=u(x,y)+iv(x,y) isanalytic, then U,=V,,U, =—V,

f(@)=u(x,y)—iv(x,y) is analytic, then U, ==V, U, =V,

w00 > f@=utiv, =0

Based on the Theorem in pp. 74, we have that f is constant throughout D
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Examples

= Example

Suppose that f 1s analytic throughout a given region D, and
the modulus If(z)l 1s constant throughout D, then the
function f(z) must be constant there too.

Proof:
f(z)|=c, forallzinD
where c 1s real constant.
If ¢c=0, then 1(z)=0 everywhere in D.
If ¢ #0, we have
2

f@f(@=c —p m=f(z),f(z)¢0inD

Both f and it conjugate are analytic, thus f must be constant in D. (Refer to Ex. 3)
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Uniquely Determined Analytic Function

= Lemma
Suppose that
a) A function { 1s analytic throughout a domain D;

b)1(z)=0 at each point z of a domain or line segment
contained in D.

Then f (z) = 0 1in D; that 1s, f (z) 1s 1dentically equal to zero
throughout D.

Refer to Chap. 6 for the proof.
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Uniquely Determined Analytic Function

* Theorem

A function that 1s analytic in a domain D 1s uniquely
determined over D by its values in a domain, or along a
line segment, contained in D.

f(2)=g(z)

f(z) g(z)
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Reflection Principle

* Theorem

Suppose that a function 1 1s analytic in some domain D
which contains a segment of the x axis and whose lower
half 1s the reflection of the upper half with respect to that

axis. Then m _ f(g)

for each point z in the domain if and only 1f 1 (x) 1s real for

each point x on the segment.
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