Cauchy-Riemann Equation

Functions of a complex variable

Let S be a setfof complex numbers.
A function defined on S is a rule that assigns to each z in S a complex
number w.
value of f at z, or $f(z)$
or

$$
w=f(z)
$$

S is the domain of definition of

$$
\begin{aligned}
& w=\frac{1}{z} \quad \text { sometimes refer to the function fitself, for simplicity. } \\
& w=z^{2}+1
\end{aligned}
$$

Both a domain of definition and a rule are needed in order for a function to be well defined.

Suppose $w=u+i s$ the value of a function at $f \quad z=x+i y$

$$
\begin{aligned}
& u+i v=f(x+i y) \\
& \text { or } f(z)=u(x, y)+i v(x, y) \\
& \text { real-valued functions of real variables } \mathrm{x}, \mathrm{y} \\
& \text { or } f(z)=u(r, \theta)+i v(r, \theta)
\end{aligned}
$$

Ex.

$$
\begin{aligned}
& f(z)=z^{2} \\
& f(x+i y)=x^{2}-y^{2}+i 2 x y \\
& u(x, y)=x^{2}-y^{2}, \quad v(x, y)=2 x y \\
& f\left(r e^{i \theta}\right)=r^{2} \cos 2 \theta+i r^{2} \sin 2 \theta \\
& u(r, \theta)=r^{2} \cos 2 \theta \quad v(r, \theta)=r^{2} \sin 2 \theta
\end{aligned}
$$

when $\mathrm{v}=0$
$f(Z)^{\text {is a real-valued function of a complex variable. }}$
$f(z)=P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{n} z^{n}$ is a polynomial of degree n.
$\frac{P(z)}{Q(z)} \quad$: rational function, defined when $\quad Q(z) \neq 0$
For multiple-valued functions : usually assign one to get single-valued function
Ex.

$$
\begin{aligned}
& z=r e^{i \theta}, \quad z \neq 0 \\
& z^{\frac{1}{2}}= \pm \sqrt{r} e^{i \theta / 2}, \quad-\pi<\theta \leq \pi \quad n \text {th } \quad \text { root }
\end{aligned}
$$

If we choose $f(z)=\sqrt{r} e^{i \theta / 2} \quad(r>0,-\pi<\theta<\pi)$

$$
-\frac{\pi}{2}<\frac{\theta}{2}<\frac{\pi}{2}
$$

$$
\text { and } f(0)=0,
$$

then f is well defined on the entrie complex plane except the ray $\theta=\pi$.

Mappings

$w=f(z)$ is not easy to graph as real functions are.
One can display some information about the function by indicating pairs
of corresponding points $z=(x, y)$ and $w=(u, v)$. (draw z and w planes separately).

When a function f is thought of in this way. it is often refried to as a mapping, or transformation.

Mapping can be translation, rotation, reflection. In such cases
it is convenient to consider z and w planes to be the same.
$w=z+1$ translation +1
$\mathrm{w}=\mathrm{iz}$ rotation
$\underline{\theta}$
$\mathrm{w}=\quad-\quad$ reflection in real axis. ${ }^{2}$
Ex. image of curves

$$
\begin{aligned}
& w=z^{2} \\
& u=x^{2}-y^{2} \\
& v=2 x y
\end{aligned}
$$

a hyperbola $x^{2}-y^{2}=c_{1}$ is mapped in a one to one manner onto the line $u=c_{1}$

right hand branch $x>0$,

image
$\mathrm{u}=\mathrm{C}_{1}$,

$$
u=C_{1},
$$

$$
V=2 y \sqrt{y^{2}+c_{1}} \quad(-\infty<y<\infty)
$$

$$
V=-2 y \sqrt{y^{2}+c_{1}} \quad(-\infty<y<\infty)
$$

Ex 2.

When $0<x_{1}<$ boint $\quad\left(x_{1}\right.$ mo) ves up a vertical half line, L1, as y increases from $y=0$.

$$
u=x^{2}-y^{2}, \quad v=2 x_{1} y
$$

$$
y=\frac{v}{2 x_{1}}
$$

$$
u=x_{1}^{2}-\left(\frac{v}{2 x_{1}}\right)^{2}, \quad v^{2}=-4 x_{1}^{2}\left(u-x_{1}^{2}\right) \longleftarrow \text { a parabola with vertex at } \quad\left(x_{1}^{2}, 0\right)
$$

half line $C D$ is mapped of half line $C^{\prime} D^{\prime}$

Ex 3.

$$
\begin{aligned}
& w=z^{2}=r^{2} e^{i 2 \theta} \\
& \text { let } \quad \begin{aligned}
w & =\rho e^{i \phi} \\
& \rho=r^{2}, \quad \phi=2 \theta+2 n \pi \quad(n=0, \pm 1, \pm 2, \ldots)
\end{aligned}
\end{aligned}
$$

$r \geq 0, \quad 0 \leq \theta \leq \pi / 2 \quad \xrightarrow{\text { one to one }} \rho \geq 0, \quad 0 \leq \phi \leq \pi$

Limits

Let a function f be defined at all points z in some deleted neighborhood of z_{o}

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}} f(z)=w_{0} \tag{1}
\end{equation*}
$$

means: the limit of $\quad f(z a) s$ approaches $z o$ is wo
$w=f(z)$ can be made arbitrarily close to w_{o} if we choose the point z close enough to z_{o} but distinct from it.
(1) means that, for each positive number, there is a positive number such that

$$
\begin{equation*}
\left|f(z)-w_{0}\right|<\varepsilon \quad \text { whenver } \quad 0<\left|z-z_{0}\right|<\delta \tag{2}
\end{equation*}
$$

Note:

(2) requires that f be defined at all points in some deleted neighborhood of zo
such a deleted neighborhood always exists when z_{o} is an interior point of a region on which is defined. We can extend the definition of limit to the case in which z_{0} is a boundary point of the region by agreeing that left of (2) be satisfied by only those points z that lie in both the region and the domain
$0<\left|z-z_{0}\right|<\delta$
Example 1. show if

$$
\begin{aligned}
& f(z)=\frac{i z}{2} \quad \text { in } \quad|z|<1, \quad \text { then } \\
& \lim _{z \rightarrow 1} f(z)=\frac{i}{2}
\end{aligned}
$$

when z in $|z|<1$

$$
\left|f(z)-\frac{i}{2}\right|=\left|\frac{i z}{2}-\frac{i}{2}\right|=\frac{|z-1|}{2}
$$

For any such z and any positive number

$$
\left|f(z)-\frac{i}{2}\right|<\varepsilon \quad \text { whenever } \quad 0<|z-1|<2 \varepsilon
$$

When a limit of a function $\quad f(e x)$ ists at a point , itts ${ }_{0}$ unique. If not, suppose $\lim _{z \rightarrow z_{0}} f(z)=$, and $\quad \lim _{z \rightarrow z_{0}} f(z)=w_{1}$

Then $\left|f(z)-w_{0}\right|<\varepsilon$ whenever $0<\left|z-z_{0}\right|<\delta_{0}$

$$
\left|f(z)-w_{1}\right|<\varepsilon \quad \text { whenever } \quad 0<\left|z-z_{0}\right|<\delta_{1}
$$

Let

$$
\delta=\min \left(\delta_{0}, \delta_{1}\right)
$$

$$
\begin{aligned}
& \text { if } \quad 0<\left|z-z_{0}\right|<\delta \\
& \left|\left[f(z)-w_{0}\right]-\left[f(z)-w_{1}\right]\right| \leq\left|f(z)-w_{0}\right|+\left|f(z)-w_{1}\right|<2 \varepsilon \\
& \text { But }-w_{0} \mid<2 \varepsilon
\end{aligned}
$$

Hence $\left|w_{1}-w_{0}\right|$ is a nonnegative constant, and be chosen arbitrarily small.

$$
w_{1}-w_{0}=0, \quad \text { or } \quad w_{1}=w_{0}
$$

Ex 2. If

$$
\begin{equation*}
f(z)=\frac{z}{=} \tag{4}
\end{equation*}
$$

then does not exist.

$$
\lim _{z \rightarrow 0} f(z)
$$

show: when $z=(x, 0) \quad f(z)=\frac{x+i 0}{x-i 0}=1$ when $z=(0, y) \quad f(z)=\frac{0+i y}{0-i y}=-1$

since a limit is unique, limit of (4) does not exist.
(2) provides a means of testing whether a given point W_{o} is a limit, it does not directly provide a method for determining that limit.

Theorems on limits

Thm 1. Suppose that

$$
\begin{array}{r}
f(z)=u(x, y)+i v(x, y), \quad z_{0}=x_{0}+i y_{0} \\
\text { and } \quad w_{0}=u_{0}+i v_{0}
\end{array}
$$

Then $\lim _{z \rightarrow z_{0}} f(z)=w_{0} \quad$ iff

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)=u_{0} \quad \text { and } \quad \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v(x, y)=v_{0}
$$

$$
\mathrm{pf}: " \Leftarrow \quad\left|u-u_{0}\right|<\frac{\varepsilon}{2} \quad \text { whenever } \quad 0<\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta_{1}
$$

$$
\left|v-v_{0}\right|<\frac{\varepsilon}{2} \quad \text { whenever } \quad 0<\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta_{2}
$$

$$
\text { let } \delta=\min \left(\delta_{1}, \delta_{2}\right)
$$

since
and

$$
\begin{aligned}
& \left|(u+i v)-\left(u_{0}+i v_{0}\right)\right|=\left|\left(u-u_{0}\right)+i\left(v-v_{0}\right)\right| \leq\left|u-u_{0}\right|+\left|v-v_{0}\right| \\
& \sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}=\left|\left(x-x_{0}\right)+i\left(y-y_{0}\right)\right|=\left|(x+i y)-\left(x_{0}+i y_{0}\right)\right| \\
& \therefore \quad\left|(u+i v)-\left(u_{0}-i v_{0}\right)\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

$$
\text { whenever } \quad 0<\left|(x+i y)-\left(x_{0}+i y_{0}\right)\right|<\delta
$$

"
\Rightarrow
But $\quad\left|(u+i v)-\left(u_{0}-i v_{0}\right)\right|<\varepsilon \quad$ whenever $\quad 0<\left|(x+i y)-\left(x_{0}+i y_{0}\right)\right|<\delta$

$$
\left|u-u_{0}\right| \leq\left|\left(u-u_{0}\right)+i\left(v-v_{0}\right)\right|=\left|(u+i v)-\left(u_{0}+i v_{0}\right)\right|<\varepsilon
$$

and $\left|v-v_{0}\right| \leq\left|\left(u-u_{0}\right)+i\left(v-v_{0}\right)\right|=\left|(u+i v)-\left(u_{0}+i v_{0}\right)\right|<\varepsilon$

$$
\left|(x+i y)-\left(x_{0}+i y_{0}\right)\right|=\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}
$$

$\therefore\left|u-u_{0}\right|<\varepsilon \quad$ and $\quad\left|v-v_{0}\right|<\varepsilon$

Thm 2. suppose that

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}} f(z)=w_{0} \quad \text { and } \quad \lim _{z \rightarrow z_{0}} F(z)=W_{0} \tag{7}
\end{equation*}
$$

Then $\lim _{z \rightarrow z_{0}}[f(z)+F(z)]=w_{0}+W_{0}$

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}}[f(z) \cdot F(z)]=w_{0} W_{0} \tag{9}
\end{equation*}
$$

and if $W_{0} \neq 0$

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)}{F(z)}=\frac{w_{0}}{W_{0}}
$$

pf: utilize Thm 1.

$$
\begin{array}{ll}
\text { for (9). } \quad & f(z)=u(x, y)+i v(x, y) \\
& F(z)=U(x, y)+i V(x, y) \\
& z_{0}=x_{0}+i y_{0}, \quad w_{0}=u_{0}+i v_{0}, \quad W_{0}=U_{0}+i V_{0}
\end{array}
$$

use Thm 1. and (7)
$f(z) F(z)=(u U-v V)+i(v U+u V)$ have the limits

$$
\begin{array}{cc}
\Downarrow & \Downarrow \\
u_{0} U_{0}-v_{0} V_{0} & v_{0} U_{0}+u_{0} V_{0} \\
=w_{0} W_{0} &
\end{array}
$$

An immediate consequence of Thm. 1:

- $\lim c=c$
$z \rightarrow z_{0}$
- $\lim _{z \rightarrow z_{0}} z=z_{0}$
- $\lim _{z \rightarrow z_{0}} z^{n}=z_{0}^{n} \quad(n=1,2, \ldots)$
by property (9) and math induction.
- $\quad P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{n} z^{n}$

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}} P(z)=P\left(z_{0}\right) \tag{11}
\end{equation*}
$$

-if $\lim _{z \rightarrow z_{0}} f(z)=w_{0}$, then $\lim _{z \rightarrow z_{0}}|f(z)|=\left|w_{0}\right|$

$$
\left\|f (z) \left|-\left|w_{0} \|\left|\leq\left|f(z)-w_{0}\right|<\varepsilon \quad\right. \text { whenever }\right.\right.\right.
$$

Limits involving the point at Infinity

It is sometime convenient to include with the complex plane the point at infinity, ∞
denoted by , and to use limits involving it.
Complex plane + infinity = extended complex plane.

complex plane passing thru the equator of a unit sphere.
To each point z in the plane there corresponds exactly one point
P on the surface of the sphere.
\downarrow
intersection of the line $z-\mathrm{N}$ with the surface.

To each point P on the surface of the sphere, other than the north pole N, there corresponds exactly one point z in the plane.

By letting the point N of the sphere correspond to the point at infinity, we obtain a one-to-one correspondence between the points of the sphere and the points of the extended complex plane.
upper sphere \longleftrightarrow exterior of unit circle

- $\lim _{z \rightarrow z_{0}} f(z)=\infty$
$\Leftrightarrow \quad|f(z)|>\frac{1}{\varepsilon} \quad$ whenever $\quad 0<\left|z-z_{0}\right|<\delta$
$\Leftrightarrow \quad\left|\frac{1}{f(z)}-0\right|<\varepsilon \quad$ whenever $\quad 0<\left|z-z_{0}\right|<\delta$
$\therefore \lim _{z \rightarrow z_{0}} f(z)=\infty \quad$ iff $\quad \lim _{z \rightarrow z_{0}} \frac{1}{f(z)}=0$
Ex1. $\lim _{z \rightarrow-1} \frac{i z+3}{z+1}=\infty \quad$ since $\lim _{\substack{\rightarrow \rightarrow-1 \\ \text { Engineering Mâthemats }}} \frac{z+1}{i z+3}=0$
- $\lim _{z \rightarrow \infty} f(z)=w_{0}$
$\Leftrightarrow \quad\left|f(z)-w_{0}\right|<\varepsilon \quad$ whenever $\quad|z|>\frac{1}{\delta}$
$\Leftrightarrow \quad\left|f\left(\frac{1}{z}\right)-w_{0}\right|<\varepsilon \quad$ whenever $\quad 0<|z-0|<\delta$
$\therefore \quad \lim _{z \rightarrow \infty} f(z)=w_{0} \quad$ iff $\quad \lim _{z \rightarrow 0} f\left(\frac{1}{z}\right)=w_{0}$

Ex 2.

$$
\lim _{z \rightarrow \infty} \frac{2 z+i}{z+1}=2 \quad \text { since } \quad \lim _{z \rightarrow 0} \frac{\left(\frac{2}{z}\right)+i}{\left(\frac{1}{z}\right)+1}=\lim _{z \rightarrow 0} \frac{2+i z}{1+z}=2
$$

- $\lim _{z \rightarrow \infty} f(z)=\infty$
$\Leftrightarrow \quad|f(z)|>\frac{1}{\varepsilon} \quad$ whenever $\quad|z|>\frac{1}{\delta}$
$\Leftrightarrow \quad\left|f\left(\frac{1}{z}\right)\right|>\frac{1}{\varepsilon} \quad$ whenever $\quad\left|\frac{1}{z}\right|>\frac{1}{\delta}$
$\Leftrightarrow \quad\left|\frac{1}{f(1 / z)}-0\right|<\varepsilon \quad$ whenever $\quad 0<|z-0|<\delta$
$\therefore \quad \lim _{z \rightarrow \infty} f(z)=\infty \quad$ iff $\quad \lim _{z \rightarrow 0} \frac{1}{f\left(\frac{1}{z}\right)}=0$

Ex 3. $\lim _{z \rightarrow \infty} \frac{2 z^{3}-1}{z^{2}+1}=\infty$
since $\lim _{z \rightarrow 0} \frac{\frac{1}{z^{2}}+1}{\frac{2}{z^{3}}-1}=\lim _{z \rightarrow 0} \frac{z+z^{3}}{2-z^{3}}=0$

Continuity

A function f is continuous at a point $z o$ if

$$
\begin{aligned}
& \lim _{z \rightarrow z_{0}} f(z) \text { exists, } \\
& f\left(z_{0}\right) \quad \text { exists, } \\
& \lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right) \\
& \left(\left|f(z)-f\left(z_{0}\right)\right|<\varepsilon\right. \\
& \text { whenever } \left.\quad\left|z-z_{0}\right|<\delta\right)
\end{aligned}
$$

- if f_{1}, f_{2} continuous at zo, then $\quad f_{1}+f_{2}, f 1 f_{1} f_{2}$
also continuous at zo .

$$
\text { So is } \frac{f_{1}}{f_{2}} \text { if } f_{2}\left(z_{0}\right) \neq 0
$$

- A polynomial is continuous in the entire plane because of (11), section 12. p. 37
- A composition of continuous function is continuous.

$$
\left|g[f(z)]-g\left[f\left(z_{0}\right)\right]\right|<\varepsilon \text {, whenver }\left|f(z)-f\left(z_{0}\right)\right|<r \text {, }
$$

- If a function $f(z)$ is continuous and non zero at a point $z o$, then

$$
f(z) \neq 0
$$ throughout some neighborhood of that point.

$$
\begin{aligned}
& \text { when } \quad f\left(z_{0}\right) \neq \text { lgt }^{\text {w }} \quad \varepsilon=\frac{\left|f\left(z_{0}\right)\right|}{2} \\
& \left|f(z)-f\left(z_{0}\right)\right|<\frac{\left|f\left(z_{0}\right)\right|}{2} \quad \text { whenever }\left|z-z_{0}\right|<\delta
\end{aligned}
$$

if there is a point z in the $\left|z-z_{0}\right|$ at δ which $f(z$ 抱en 0

$$
\left|f\left(z_{0}\right)\right|<\frac{\mid f\left(z_{0}\right. \text { 申 }}{2} \text { contradiction. }
$$

From Thm 1

a function f of a complex variable is continuous at a point

$$
z_{0}=\left(x_{0}, y_{0}\right)
$$

iff its component functions u and v are continuous there.

Ex. The function
$f(z)=\cos \left(x^{2}-y^{2}\right) \cosh 2 x y-i \sin \left(x^{2}-y^{2}\right) \sinh 2 x y$
is continuous everywhere in the complex plane since
(i) $\quad x^{2}-y^{2}$ are continuous \quad (polynomial)
$2 x y$
(ii) \cos , \sin, cosh, sinh are continuous
(iii) real and imaginary component are continuous complex function is continuous.

$$
\begin{aligned}
& \sinh x=\frac{e^{x}-e^{-x}}{2} \quad \sin x=\frac{e^{i x}-e^{-i x}}{2 i} \\
& \cosh x=\frac{e^{x}+e^{-x}}{2}
\end{aligned}
$$

Derivatives

 $z o$. The derivative of f at $z o$, written

$$
\begin{aligned}
& f \text { at } z o \text {, written } \\
& f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f^{f}\left(z_{0}\right)}{z-z_{0}}
\end{aligned}
$$

provided this limit exists.
f is said to be differentiable at $z o$.

$$
\begin{aligned}
& \text { let } \Delta z=z-z_{0} \\
& f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z} \\
& \text { let } \quad \Delta w=f(z+\Delta z)-f(z) . \\
& f^{\prime}(z)=\frac{d w}{d z}=\lim _{\Delta z \rightarrow 0} \frac{\Delta w}{\Delta z}
\end{aligned}
$$

Ex1. Suppose $f(z)=z^{2}$ at any point z

$$
\begin{gathered}
\lim _{\Delta z \rightarrow 0} \frac{\Delta w}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{(z+\Delta z)^{2}-z^{2}}{\Delta z}=\lim _{\Delta z \rightarrow 0}(2 z+\Delta z)=2 z+0=2 z \\
\text { since } 2 z+\Delta z \text { a polynomial in } \quad . \Delta z \\
\therefore \quad f^{\prime}(z)=\frac{d w}{d z}=2 z
\end{gathered}
$$

Ex2. $\quad f(z)=|z|^{2}$

$$
\frac{\Delta w}{\Delta z}=\frac{|z+\Delta z|^{2}-|z|^{2}}{\Delta z}=\frac{(z+\Delta z)(\bar{z}+\overline{\Delta z})-z \bar{z}}{\Delta z}=\bar{z}+\overline{\Delta z}+z \frac{\overline{\Delta z}}{\Delta z}
$$

when $\Delta z \rightarrow 0 \operatorname{thr}(4 \Delta x, 0)$ on the real axis $\quad \overline{\Delta z}=\Delta z$
Hence \underline{f} the limit of $\frac{\Delta w}{\Delta z}$ exists, its value $=\quad \bar{z}+z$
when $\Delta z \rightarrow 0$ thr $(10, \overline{\Delta z} y)$ on the imaginary axis.
$\overline{\Delta z}=-\Delta z$, limit $=\bar{z}-z \quad$ if it exists.
since limits are unique,
$\bar{z}+z=\bar{z}-z, \quad$ or $\quad z=0$ if $\quad \frac{d w}{d z}$ to exist.
observe that $\frac{\Delta w}{\Delta z} \rightarrow \overline{\Delta z}$ when $z=0$
$\therefore \frac{d w}{d z}$ exists only at $z=0$, its value $=0$

- Example 2 shows that
a function can be differentiable at a certain point but nowhere else in any neighborhood of that point.
- $\operatorname{Re}|z|^{2}=x^{2}+y^{2} \quad$ are continuous, partially

Im
differentiable at a point.
but $\quad|z|^{2}=0$ may not be differentiable there.

- $f(z)=|z|^{2}$ is continuous at each point in the plane since its components are continuous at each point.
not necessarily
\therefore continuity \quad derivative exists.
existence of derivative $\quad \Rightarrow$ ontinuity.

$$
\begin{aligned}
\lim _{z \rightarrow z_{0}}\left[f(z)-f\left(z_{0}\right)\right]= & \lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) \\
& =f^{\prime}\left(z_{0}\right) \cdot 0=0 \\
& \therefore \lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)
\end{aligned}
$$

16. Differentiation Formulas

$$
\begin{align*}
& \frac{d}{d z} C=0 \quad C: \text { complex } \quad \text { constant } \\
& \frac{d}{d z} z=1 \\
& \frac{d}{d z}[c f(z)]=c f^{\prime}(z) \\
& \frac{d}{d z} z^{n}=n z^{n-1} \quad n \text { a positive integer. } \\
& \frac{d}{d z}[f(z)+F(z)]=f^{\prime}(z)+F^{\prime}(z) \\
& \frac{d}{d z}[f(z) F(z)]=f^{2}(z) F^{\prime}(z)+f^{\prime}(z) F(z) \tag{4}\\
& w h e n \\
& \frac{d}{d z}\left[\frac { f (z) } { F (z) } \left[=\frac{F(z) f^{\prime}(z)-f(z) F^{\prime}(z)}{[F(z)]^{2}}\right.\right.
\end{align*}
$$

$$
\begin{aligned}
& f(z+\Delta z) F(z+\Delta z)-f(z) F(z) \\
& \quad=f(z)[F(z+\Delta z)-F(z)]+[f(z+\Delta z)-f(z)] F(z+\Delta z) \\
& \frac{f(z+\Delta z) F(z+\Delta z)-f(z) F(z)}{\Delta z}=f(z) \frac{F(z+\Delta z)-F(z)}{\Delta z}+\frac{f(z+\Delta z)-f(z)}{\Delta z} F(z+\Delta z) \\
& \text { as } \Delta z \rightarrow 0 \quad \begin{aligned}
\frac{d}{d z}[f F] & =f(z) F^{\prime}(z)+f^{\prime}(z) F(z+\Delta z) \\
& \left.=f(z) F^{\prime}(z)+f^{\prime}(z) F(z) \quad \text { (F continuous at } z\right)
\end{aligned}
\end{aligned}
$$

f has a derivative at z_{0}
g has a derivative at $f\left(z_{0}\right)$
$F(z)=g[f(z)]$ has a derivative at z_{0}

$$
\begin{align*}
& \text { and } \\
& \quad F^{\prime}\left(z_{0}\right)=g^{\prime}\left[f\left(z_{0}\right)\right] f^{\prime}\left(z_{0}^{\text {chain rule }}\right. \tag{6}\\
& \frac{d W}{d z}=\frac{d W}{d w} \frac{d w}{d z}
\end{align*}
$$

$p f$ of (6)
choose a z_{0} at which $f\left(z_{0}\right)$ exists.
let $w_{0}=f\left(z_{0}\right)$ and assume $g^{\prime}\left(w_{0}\right)$ exists.
Then, there is $\left|w-w_{0}\right|<\frac{\text { f }}{<} w_{0}$ such that
we can define a function

$$
' \text { with } \quad \Phi\left(w_{0}\right)^{\text {and }}=0
$$

$$
\begin{equation*}
\Phi(w)=\frac{g(w)-g\left(w_{0}\right)}{w-w_{0}}-g^{\prime}\left(w_{0}\right) \quad \text { when } \quad w \neq w_{0} \tag{7}
\end{equation*}
$$

$\lim \Phi(w)=0$,
Hence Φ is continuous at wo
(7) $\Rightarrow \quad g(w)-g\left(w_{0}\right)=\left[g^{\prime}\left(w_{0}\right)+\Phi(w)\right]\left(w-w_{0}\right) \quad\left(\left|w-w_{0}\right|<\varepsilon\right)$

$$
\begin{equation*}
\text { valid even when } \quad w=w_{0} \tag{9}
\end{equation*}
$$

since $f^{\prime}\left(z_{0}\right)$ exists and therefore f is continuous at $z o$, then we can have $f(z)$ lies in $\quad\left|w-w_{0}\right|<\varepsilon$ of w_{0} if $\left|z-z_{0}\right|<\delta$ substitute w by $f(z)$ in (9) when z in

$$
\left|z-z_{0}\right|<\delta
$$

(9) becomes

$$
\begin{gather*}
\frac{g[f(z)]-g\left[f\left(z_{0}\right)\right]}{z-z_{0}}=\left\{g^{\prime}\left[f\left(z_{0}\right)\right]+\Phi[f(z)]\right\} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \tag{10}\\
\left(0<\left|z-z_{0}\right|<\delta\right)
\end{gather*}
$$

since f is continuous at z_{0}, Φ is continuous at

$$
w_{0}=f\left(z_{0}\right)
$$

$\therefore \Phi[f(z)]$ is continuous at z_{0}, and since

$$
\Phi\left(w_{0}\right)=0
$$

$$
\lim _{z \rightarrow z_{0}} \Phi[f(z)]=0
$$

so (10) becomes

$$
F^{\prime}\left(z_{0}\right)=g_{\text {Engineering Mathematic III }}^{\prime}\left[f\left(z_{0}\right)\right] f^{\prime}\left(z_{0}\right) \text { as } z \rightarrow z_{0}
$$

Cauchy-Riemann Equations

Suppose that $f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z} \quad$ exists.

$$
\text { writing } \quad z_{0}=x_{0}+i y_{0,} \quad \Delta z=\Delta x+i \Delta y
$$

Then by Thm. 1

$$
\begin{align*}
& \operatorname{Re}\left[f^{\prime}\left(z_{0}\right)\right]=\lim _{(\Delta x, \Delta y) \rightarrow(0,0)} \operatorname{Re}\left[\frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}\right] \tag{3}\\
& \operatorname{Im}\left[f^{\prime}\left(z_{0}\right)\right]=\lim _{(\Delta x, \Delta y) \rightarrow(0,0)} \operatorname{Im}\left[\frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}\right] \tag{4}
\end{align*}
$$

where

$$
\begin{align*}
\frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}= & \frac{u\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)}{\Delta x+i \Delta y} \tag{5}\\
& +\frac{i\left[v\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)\right]}{\Delta x+i \Delta y}
\end{align*}
$$

Let $(\Delta x, \Delta$ 绾 n d to $(0,0)$ horizontally through
($\mathrm{A} \mathrm{ir},(0,1)$
$\Delta y=0$

$$
\begin{align*}
\therefore & \operatorname{Re}\left[f^{\prime}\left(z_{0}\right)\right]=\lim _{\Delta x \rightarrow 0} \frac{u\left(x_{0}+\Delta x, y_{0}\right)-u\left(x_{0}, y_{0}\right)}{\Delta x} \\
& \operatorname{Im}\left[f^{\prime}\left(z_{0}\right)\right]=\lim _{\Delta x \rightarrow 0} \frac{v\left(x_{0}+\Delta x, y_{0}\right)-v\left(x_{0}, y_{0}\right)}{\Delta x} \\
\therefore & f^{\prime}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right) \tag{6}
\end{align*}
$$

Let $(\Delta x, \Delta y$ tend to $(0,0)$ vertically thru (0, A.y) Δ then

$$
\begin{align*}
f^{\prime}\left(z_{0}\right) & =\left(\frac{u\left(x_{0}, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right)}{i \Delta y}+\frac{i\left[v\left(x_{0}, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)\right]}{i \Delta y}\right) \\
& =v_{y}\left(x_{0}, y_{0}\right)-i u_{y}\left(x_{0}, y_{0}\right) \tag{7}\\
& =-i u_{y}+v_{y}
\end{align*}
$$

$(6)=(7)$

$$
\begin{equation*}
\therefore \quad u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right) \tag{8}
\end{equation*}
$$

$$
u_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right)
$$

Cauchy-Riemann Equations.

Thm : suppose

$$
f(z)=u(x, y)+i v(x, y)
$$

$$
f^{\prime}\left(z^{g \mathrm{gxists}} \text { at a point } \quad z_{0}=x_{0}+i y_{0}\right.
$$

Then

$$
\begin{aligned}
& u_{x}, u_{y}, v_{x}, v_{y} \quad \text { exist at }\left(x_{0}, y_{0}\right) \\
& \text { and } u_{x}=v_{y}, u_{y}=-v_{x} ; \text { also } f^{\prime}(z)=u_{x}+i v_{x}
\end{aligned}
$$

Ex 1.

$$
\begin{aligned}
& f(z)=z^{2}=x^{2}-y^{2}+i 2 x y \\
& u_{x}=2 x \quad v_{x}=2 y \\
& u_{y}=-2 y \quad v_{y}=2 x \\
& u_{x}=v_{y}, \quad u_{y}=-v_{x} \\
& f^{\prime}(z)=2 x+i 2 y=2(x+i y)=2 z
\end{aligned}
$$

Cauchy-Riemann equations are Necessary conditions for the existence of the derivative of a function f at z.
\Rightarrow Can be used to locate points at which f does not have a derivative.

Ex 2. $f(z)=|z|^{2}$,

$$
\begin{aligned}
& u(x, y)=x^{2}+y^{2} \quad v(x, y)=0 \\
& u_{x}=2 x \quad v_{x}=0 \quad u_{x} \neq v_{y}, \quad f^{\prime}(z) \text { does not exist } \\
& u_{y}=2 y \quad v_{y}=0 \\
& \text { at any nonzero point. }
\end{aligned}
$$

The above Thm does not ensure the existence of $f^{\prime}\left(z_{0}\right)$ (say)

Sufficient Conditions For Differentiability

$$
\begin{array}{cl}
f^{\prime}\left(z_{0}\right) \text { exist } & \rightarrow u_{x}=v_{y}, \quad u_{y}=-v_{x} \\
\text { but not } & " \leftarrow "
\end{array}
$$

Thm.
Let $f(z)=u(x, y)+i v(x, y)$ be defined throughout some néighborhood of a point

$$
z_{0}=x_{0}+i y_{0}
$$

suppose $u_{x}, u_{y}, v_{x}, v_{y}^{\text {exist everywhere in the neighborhood and }}$ are continuous at

$$
\left(x_{0}, y_{0}\right)
$$

Then, if $\quad u_{x}=v_{y}, \quad u_{y}=-v_{x} \quad$ at $\left(x_{0}, y_{0}\right)$

$$
\Rightarrow f^{\prime}\left(z_{0}\right) \quad \text { exists }
$$

pf : let $\quad \Delta z=\Delta x+i \Delta y, \quad$ where $\quad 0<|\Delta z|<\varepsilon$

$$
\Delta w=f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)
$$

Thus

$$
\Delta w=\Delta u+i \Delta v \quad \Leftarrow u\left(z_{0}+\Delta z\right)-u\left(z_{0}\right)+i\left[v\left(z_{0}+\Delta z\right)-v\left(z_{0}\right)\right]
$$

where

$$
\begin{aligned}
& \Delta u=u\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-u\left(x_{0}, y_{0}\right) \\
& \Delta v=v\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-v\left(x_{0}, y_{0}\right)
\end{aligned}
$$

\Rightarrow Now in view of the continuity of the first-order partial derivatives of u and v at the point $\quad\left(x_{0}, y_{0}\right)$

$$
\begin{aligned}
\Delta u=u\left(x_{0}, y_{0}\right)+u_{x}\left(x_{0}, y_{0}\right) \Delta x+u_{y}\left(x_{0}, y_{0}\right) \Delta y & +u_{x y}\left(x_{0}, y_{0}\right) \Delta x \Delta y \\
& +u_{x x}\left(x_{0}, y_{0}\right) \frac{\Delta x^{2}}{2!} \\
& +u_{y y}\left(x_{0}, y_{0}\right) \frac{\Delta y^{2}}{2!}
\end{aligned}
$$

$$
\begin{aligned}
&-u\left(x_{0}, y_{0}\right) \\
&= u_{x}\left(x_{0}, y_{0}\right) \Delta x+u_{y}\left(x_{0}, \ldots\right. \\
& \text { Envine) } \Delta \Delta y \text { 中er } \varepsilon_{1} \sqrt{(\Delta x)^{2}+(\Delta y)^{2}}
\end{aligned}
$$

$\Delta v=v_{x}\left(x_{0}, y_{0}\right) \Delta x+v_{y}\left(x_{0}, y_{0}\right) \Delta y+\varepsilon_{2} \sqrt{(\Delta x)^{2}+(\Delta y)^{2}}$

$$
\varepsilon_{1}, \varepsilon_{2} \rightarrow 0, a s \quad(\Delta x, \Delta y) \rightarrow(0,0)
$$

$$
\begin{aligned}
\Delta w & =\Delta u+i \Delta v \\
& =\text { above }
\end{aligned}
$$

assuming that the Cauchy-Riemann equations are satisfied at
to get $\frac{\Delta w}{\Delta z}=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)+\left(\varepsilon_{1}+i \varepsilon_{2}\right) \frac{\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}}{\Delta z}$
but $\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}=|\Delta z|$
so $\quad\left|\frac{\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}}{\Delta z}\right|=1$
also $\varepsilon_{1}+i \notin$ ends to 0 , as $\quad(\Delta x, \Delta y) \rightarrow(0,0)$
The last term in (4) tends to 0 as $\quad \Delta z \rightarrow 0$
\therefore The limit of $\frac{\Delta w}{\Delta z}$ exists, and $f^{\prime}\left(z_{0}\right)=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)$.

Ex 1. $f(z)=e^{x}(\cos y+i \sin y)$

$$
\begin{aligned}
& u(x, y)=e^{x} \cos y \\
& v(x, y)=e^{x} \sin y
\end{aligned}
$$

$u_{x}=v_{y}, \quad u_{y}=-v_{x}$ everywhere, and continuous.
$\Rightarrow f^{\prime}(z)$ exists everywhere, and

$$
f^{\prime}(z)=u_{x}+i v_{x}=e^{x}(\cos y+i \sin y)
$$

Ex 2. $f(z)=|z|^{2}$

$$
\begin{array}{lcl}
u(x, y)=x^{2}+y^{2} & u_{x}=2 x & u_{y}=2 y \\
v(x, y)=0 & v_{x}=0 & v_{y}=0
\end{array}
$$

has a derivative at $z=0$.

$$
f^{\prime}(0)=0+i 0
$$

can not have derivative at any nonzero point.

Polar Coordinates

$$
\begin{array}{ll}
x=r \cos \theta & y=r \sin \theta \\
z=x+i y=r e^{i \theta} & (z \neq 0)
\end{array}
$$

Suppose that $u_{x} u_{y}, v_{x},{ }_{y}^{x} x_{y}$ ist everywhere in some neighborhood of a given nonzero point z_{o} and are continuous at that point.
$u_{r}, u_{\theta}, v_{r}, v_{\theta}$ also have these properties, and (by chain rule)

$$
\begin{align*}
& \frac{\partial u}{\partial r}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial r} \\
& \frac{\partial u}{\partial \theta}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial \theta} \\
& u_{r}=u_{x} \cos \theta+u_{y} \sin \theta \tag{2}\\
& u_{\theta}=-u_{x} r \sin \theta+u_{y} r \cos \theta
\end{align*}
$$

Similarly,

$$
\begin{align*}
& v_{r}=v_{x} \cos \theta+v_{y} \sin \theta \tag{3}\\
& v_{\theta}=-v_{x} r \sin \theta+v_{\text {Engineerngnathematics II }} r \cos \theta
\end{align*}
$$

$$
\begin{aligned}
& \text { If } u_{x}=v_{y}, u_{y}=-v_{x} \\
& \qquad \begin{array}{l}
v_{r}=-u_{y} \cos \theta+u_{x} \sin \theta \\
v_{\theta}=u_{y} r \sin \theta+u_{x} r \cos \theta \\
\text { from (2) (5), } \quad u_{r}=\frac{1}{r} v_{\theta} \\
\frac{1}{r} u_{\theta}=-v_{r}
\end{array}
\end{aligned}
$$

Thm. p53...

$$
\begin{gathered}
f^{\prime}\left(z_{0}\right)=u_{x}+i v_{x} \\
=?
\end{gathered}
$$

$$
u_{r}=u_{x} \cos \theta+u_{y} \sin \theta
$$

$$
u_{r} \cos \theta=u_{x} \cos ^{2} \theta+u_{y} \sin \theta \cos \theta
$$

$$
\begin{aligned}
v_{r} & =v_{x} \cos \theta+v_{y} \sin \theta \\
& =-u_{y} \cos \theta+u_{x} \sin \theta
\end{aligned}
$$

$$
v_{r} \sin \theta=-u_{y} \cos \theta \sin \theta+u_{x} \sin ^{2} \theta
$$

$\therefore u_{r} \cos \theta+v_{r} \sin \theta=u_{x}$

$$
u_{r}=v_{y} \cos \theta-v_{x} \sin \theta
$$

$$
v_{r}=v_{x} \cos \theta+v_{y} \sin \theta
$$

$u_{r} \sin \theta=v_{y} \cos \theta \sin \theta-v_{x} \sin ^{2} \theta \quad \cos \theta v_{r}=v_{x} \cos ^{2} \theta+v_{y} \sin \theta \cos \theta$ $v_{r} \cos \theta-u_{r} \sin \theta=v_{x}$

$$
\begin{align*}
\therefore f^{\prime}\left(z_{0}\right)= & u_{r} \cos \theta+v_{r} \sin \theta+i\left(v_{r} \cos \theta-u_{r} \sin \theta\right) \\
& =(\cos \theta-i \sin \theta)\left(u_{r}+i v_{r}\right) \\
& =e^{-i \theta}\left(u_{r}+i v_{r}\right) \tag{7}
\end{align*}
$$

Ex : Consider $\quad f(z)=\frac{1}{z}=\frac{1}{r e^{i \theta}}$

$$
u(r, \theta)=\frac{1}{r} \cos \theta \quad v(r, \theta)=-\frac{1}{r} \sin \theta
$$

$$
u_{r}=-\frac{1}{r^{2}} \cos \theta \quad v_{r}=\frac{1}{r^{2}} \sin \theta
$$

$$
u_{\theta}=-\frac{1}{r} \sin \theta \quad v_{\theta}=-\frac{1}{r} \cos \theta
$$

$$
\Rightarrow u_{r}=\frac{1}{r} v_{\theta}, \quad \frac{1}{r} u_{\theta}=-v_{r} \text { at any non-zero point } \quad z=r e^{i \theta}
$$

$\therefore f^{\prime}$ exists

$$
\begin{aligned}
f^{\prime} & =e^{-i \theta}\left(-\frac{1}{r^{2}} \cos \theta+\frac{i}{r^{2}} \sin \theta\right) \\
& =\frac{1}{r^{2}}\left(-e^{-i \theta}\right) e^{-i \theta}=-\frac{1}{r^{2}} e^{-i 2 \theta}=-\frac{1}{z^{2}}
\end{aligned}
$$

