DERIVATIVE OF

ANALYTIC FUNCTION

Derivatives of Analytic Functions $z=x+i y$

Let $f(z)$ be analytic around z, then

$$
\frac{d f(x)}{d x}=g(x) \quad \rightarrow \quad \frac{d f(z)}{d z}=g(z)
$$

Proof:
$f(z)$ analytic $\rightarrow \quad f^{\prime}(z)=\frac{\partial f(x+i y)}{\partial x}=\left.\frac{d f(x)}{d x}\right|_{x=z}=g(z)$
E.g. $\frac{d x^{n}}{d x}=n x^{n-1} \rightarrow \quad \frac{d z^{n}}{d z}=n z^{n-1}$
$\therefore \quad$ Analytic functions can be defined by Taylor series of the same coefficients as their real counterparts.

Derivative of Logarithm

CRCs $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$

$$
r=\sqrt{x^{2}+y^{2}} \quad \theta=\tan ^{-1} \frac{y}{x}
$$

$$
\frac{d \ln z}{d z}=\frac{1}{z}
$$

for z within each branch.

Proof:

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\frac{1}{r} \frac{\partial r}{\partial x}=\frac{x}{r^{2}}=\frac{\partial v}{\partial y} \\
& \frac{\partial u}{\partial y}=\frac{1}{r} \frac{\partial r}{\partial y}=\frac{y}{r^{2}}=-\frac{\partial v}{\partial x}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \theta}{\partial y}=\left(1+\frac{y^{2}}{x^{2}}\right)^{-1} \frac{1}{x}=\frac{x}{r^{2}} \\
& \frac{\partial \theta}{\partial x}=\left(1+\frac{y^{2}}{x^{2}}\right)^{-1}\left(-\frac{y}{x^{2}}\right)=-\frac{y}{r^{2}}
\end{aligned}
$$

$\rightarrow \quad \ln z$ is analytic within each branch.
$\therefore \quad \frac{d \ln z}{d z}=\frac{\partial \ln z}{\partial x}=\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x}=\frac{x}{r^{2}}-i \frac{y}{r^{2}}=\frac{1}{x+i y}=\frac{1}{z}$

$$
r^{2}=z z^{*}
$$

Derivatives of Functions w(t)

- Consider derivatives of complex-valued functions w of real variable t

$$
w(t)=u(t)+i v(t)
$$

where the function u and v are real-valued functions of t. The derivative

$$
w^{\prime}(t), \text { or } \frac{d}{d t} w(t)
$$

of the function $\mathrm{w}(\mathrm{t})$ at a point t is defined as

$$
w^{\prime}(t)=u^{\prime}(t)+i v^{\prime}(t)
$$

Derivatives of Functions w(t)

- Properties

For any complex constant $\mathrm{z}_{0}=\mathrm{x}_{0}+\mathrm{iy}_{0}$,

$$
\left.\left.\begin{array}{rl}
\frac{d}{d t}\left[z_{0} w(t)\right] & =\left[\left(x_{0}+i y_{0}\right)(u+i v)\right]^{\prime}=\left[\begin{array}{ll}
\left(x_{0} u\right. & \left.y_{0} v\right)
\end{array}+i\left(y_{0} u+x_{0} v\right)\right.
\end{array}\right]^{\prime}\right] \text { v(t) }
$$

Derivatives of Functions w(t)

- Properties

$$
\frac{d}{d t} e^{z_{0} t}=z_{0} e^{z_{0} t}
$$

where $\mathrm{z}_{0}=\mathrm{x}_{0}+\mathrm{i} \mathrm{y}_{0}$. We write

$$
\begin{aligned}
& e^{z_{0} t}=e^{\left(x_{0}+i i_{0}\right) t}=e^{x_{0} t} \cos y_{0} t+i e^{x_{0} t} \sin y_{0} t \\
& \frac{d}{d t} e^{z_{0} t}=\left(e^{x_{0} t} \cos y_{0} t\right)^{\prime}+i\left(e^{x_{0} t} \sin y_{0} t\right)^{\prime}
\end{aligned}
$$

Similar rules from calculus and some simple algebra then lead us to the expression

$$
\frac{d}{d t} e^{z_{0} t}=\left(x_{0}+i y_{0}\right) e^{\left(x_{0}+i_{0}\right) t}=z_{0} 0^{z_{0} t}
$$

Derivatives of Functions w(t)

- Example

Suppose that the real function $\mathrm{f}(\mathrm{t})$ is continuous on an interval $\mathrm{a} \leq \mathrm{t} \leq \mathrm{b}$, if $\mathrm{f}^{\prime}(\mathrm{t})$ exists when $\mathrm{a}<\mathrm{t}<\mathrm{b}$, the mean value theorem for derivatives tells us that there is a number ζ in the interval $\mathrm{a}<\zeta<\mathrm{b}$ such that

$$
f^{\prime}()=\frac{f(b) f(a)}{b a}
$$

Derivatives of Functions w(t)

- Example (Cont')

The mean value theorem no longer applies for some complex functions. For instance, the function

$$
w(t)=e^{i t}
$$

on the interval $0 \leq \mathrm{t} \leq 2 \pi$.
Please note that

$$
|W(t)|=\left|i e^{i t}\right|=1
$$

And this means that the derivative $\mathrm{w}^{\prime}(\mathrm{t})$ is never zero, while

$$
w(2 \pi)-w(0)=0 \Longleftrightarrow w^{\prime}(\varsigma) \neq \frac{w(2 \pi)-w(0)}{2 \pi-0}=0, \forall \varsigma \in(0,2 \pi)
$$

Note: not every rules from calculus holds for complex functions

