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Derivatives of Analytic Functions 
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 Analytic functions can be defined by Taylor series of the 

  same coefficients as their real counterparts.  
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Logarithm 
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Proof :  ln ln 2z r i n   

for z within each branch. 
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 ln z is analytic within each branch. 
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QED 



• Consider derivatives of complex-valued functions w of 
real variable t 

 

     where the function u and v are real-valued functions of t. 
The derivative 

 

  

  of the function w(t) at a point t is defined as  
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w(t) = u(t)+ iv(t)

w'(t),or
d

dt
w(t)

w'(t) = u'(t)+ iv'(t)



• Properties 

   For any complex constant z0=x0+iy0, 
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d

dt
[z0w(t)] = [(x0 + iy0 )(u+ iv)]' = [(x0u - y0v)+ i(y0u+ x0v)]'

= (x0u - y0v)'+ i(y0u+ x0v)'

= (x0u'- y0v')+ i(y0u'+ x0v')

= (x0 + iy0 )(u'+ iv') = z0w'(t)

u(t) v(t) 



• Properties 
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d

dt
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z0t

where z0=x0+iy0. We write    
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Similar rules from calculus and some simple algebra then lead us to the expression 
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• Example 

    Suppose that the real function f(t) is continuous on an 

interval a≤ t ≤b, if f’(t) exists when a<t<b,  the mean value 
theorem for derivatives tells us that there is a number ζ in 
the interval a<ζ<b such that 
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f '(V ) =
f (b) - f (a)

b - a



• Example (Cont’) 
   The mean value theorem no longer applies for some 

complex functions. For instance, the function  

 

     on the interval 0 ≤ t ≤ 2π . 
      Please note that  

 

     And this means that the derivative w’(t) is never zero, while   
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