Singularities, Zeros And Poles

Singularities

- We have seen that the function $w=z^{3}$ is analytic everywhere except at $z=$: whils \dagger the function $w=z^{-1}$ is analytic everywhere except atz=0.
- In fact, NO function except a constant is analytic throughout the complex plane, and every function except of a complex variable has one or more points in the z plane where it ceases to be analytic.
- These points are called "singularities".

Types of singularities

- Three types of singularities exist:
- Poles or unessential singularities
- "single-valued" functions
- Essential singularities
- "single-valued" functions
- Branch points
- "multivalued" functions

Poles or unessential singularities

- A pole is a point in the complex plane at which the value of a function becomes infinite.
- For example, $w=z^{-1}$ is infinite at $z=0$, and we say that the function $w=z^{-1}$ has a pole at the origin.
- A pole has an "order":
- The pole in $w=z^{-1}$ is first order.
- The pole in $w=z^{-2}$ is second order.

The order of a pole

If $w=f(z)$ becomes infinite at the point $z=a$, we define:

$$
g(z)=(z-a)^{n} f(z) \quad \text { where } n \text { is an integer. }
$$

If it is possible to find a finite value of n which makes $g(z)$ analytic at $z=a$, then, the pole of $f(z)$ has been "removed" in forming $g(z)$.
The order of the pole is defined as the minimum integer value of n for whi $g(z)$ is analytic at $z=a$.

$$
\begin{array}{cc}
w=\frac{1}{z} & \text { pole, }(\mathrm{a}=0) \\
(z)^{n} \frac{1}{z}=g(z) & \text { Order }=1
\end{array}
$$

Essential singularities

- Certain functions of complex variables have an infinite number of terms which all approach infinity as the complex variable approaches a specific value. These could be thought of as poles of infinite order, but as the singularity cannot be removed by multiplying the function by a finite factor, they cannot be poles.
- This type of sigularity is called an essential singularity and is portrayed by functions which can be expanded in a descending power series of the variable.
- Example: $e^{1 / 2}$ has an essential sigularity at $z=0$.

Essential singularities can be distinguished from poles by the fact that
 they cannot be removed by multiplying by a factor of finite value.

Example:

$$
w=e^{1 / 2}=1+\frac{1}{z}+\frac{1}{2!z^{2}}+\ldots+\frac{1}{n!z^{n}}+. . \quad \text { infinite at the origin }
$$

We try to remove the singularity of the function at the origin by multiplying z^{p}

$$
z^{p} w=z^{p}+z^{p-1}+\frac{z^{p-2}}{2!}+\ldots+\frac{z^{p-n}}{n!}+. .
$$

All terms are positive
It consists of a finite number of positive powers of z, followed by an infinite number of negative powers of z .

As $\quad z \rightarrow 0, \quad z^{p} w \rightarrow \infty$
It is impossible to find a finite value of p which will remove the singularity in $\mathrm{e}^{1 / \mathrm{z}}$ at the origin.
The singularity is "essential".

Branch points

- The singularities described above arise from the non-analytic behaviour of single-valued functions.
- However, multi-valued functions frequently arise in the solution of engineering problems.
- For example:

$$
w=z^{\frac{1}{2}} z=r e^{i \theta} w=r^{\frac{1}{2}} e^{\frac{1}{2} i \theta}
$$

For any value of z represented by a point on the circumference of the circle in the z plane, there will be two corresponding values of w represented by points in the w plane.

$$
w=z^{\frac{1}{2}} z=r e^{i \theta} \longrightarrow w=r^{\frac{1}{2}} e^{\frac{1}{2} i \theta}
$$

$$
\begin{array}{r}
w=u+i v \\
u=r^{\frac{1}{2}} \cos \frac{1}{2} \theta \text { and } v=r^{\frac{1}{2}} \sin \frac{1}{2} \theta
\end{array}
$$

$\frac{\partial u}{\partial r}=\frac{1}{2 \sqrt{r}} \cos \frac{1}{2} \theta$	$\frac{\partial v}{\partial r}=\frac{1}{2 \sqrt{r}} \sin \frac{1}{2} \theta$
$\frac{\partial u}{\partial \theta}=-\frac{1}{2} \sqrt{r} \sin \frac{1}{2} \theta$	$\frac{\partial v}{\partial \theta}=\frac{1}{2} \sqrt{r} \cos \frac{1}{2} \theta$

A given range, where the function is single valued: the "branch"
The particular value of z at which the function becomes infinite or zero is called the "branch point".
${ }^{\text {C }}$ Cauchy-Riemann conditions in polar coordinates ${ }^{\text {Engineering mathematics iI }}$

Branch point

- A function is only multi-valued around closed contours which enclose the branch point.
- It is only necessary to eliminate such contours and the function will become single valued.
- The simplest way of doing this is to erect a barrier from the branch point to infinity and not allow any curve to cross the barrier.
- The function becomes single valued and analytic for all permitted curves.

Barrier - branch cut

- The barrier must start from the branch point but it can go to infinity in any direction in the z plane, and may be either curved or straight.
- In most normal applications, the barrier is drawn along the negative real axis.
- The branch is termed the "principle branch"
- The barrier is termed the "branch cut".
- For the example given in the previous slide, the region, the barrier confines the function to the region in which the argument of z is within the range $-\pi<\theta<\pi$.

Zeros and Poles of order m

Consider a function f that is analytic at a point z_{0}.
(From Sec. 40). $\quad f^{(n)}(z) \quad(n=1,2, \ldots$.$) exist at z_{0}$

$$
\begin{gathered}
\text { If } f\left(z_{0}\right)=0, \\
f^{\prime}\left(z_{0}\right)=0 \\
: \\
f^{(m-1)}\left(z_{0}\right)=0 \\
f^{(m)}\left(z_{0}\right) \neq 0
\end{gathered}
$$

Then f is said to have a zero of order m at z_{0}.
Lemma: $f(z)=\left(z-z_{0}\right)^{m} g(z)$
analytic and non-zero at z_{0}.

Example. $f(z)=z\left(e^{z}-1\right)$

$$
=z^{2}\left(1+\frac{z}{2!}+\frac{z^{2}}{3!}+\ldots \ldots\right)
$$

has a zero of order $m=2$ at $z_{0}=0$

$$
g(z)=\left\{\begin{array}{cc}
\left(e^{z}-1\right) / z & \text { when } z \neq 0 \\
1 & \text { when } z=0
\end{array} \text { is analytic at } z=0 .\right.
$$

Thm. Functions p and q are analytic at z_{0}, and $p\left(z_{0}\right) \neq 0$.
If q has a zero of order m at z_{0}, then

Example. $f(z)=\frac{1}{z\left(e^{z}-1\right)}$ has a pole of order 2 at $z_{0}=0$

Corollary: Let two functions p and q be analytic at a point z_{0}.

$$
\text { If } p\left(z_{0}\right) \neq 0, \quad q\left(z_{0}\right)=0, \text { and } \quad q^{\prime}\left(z_{0}\right) \neq 0
$$

then z_{0} is a simple pole of $\frac{p(z)}{q(z)}$ and

$$
\operatorname{Res}_{z=z_{0}} \frac{p(z)}{q(z)}=\frac{p\left(z_{0}\right)}{q^{\prime}\left(z_{0}\right)}
$$

Pf:

$$
\begin{aligned}
& q(z)=\left(z-z_{0}\right) g(z), \quad g(z) \text { is analytic ard non zero at } z_{0} \\
& p(z)=\frac{p(z) / g(z)}{z-z_{0}} \\
& q(z)
\end{aligned}
$$

Form Theorem in sec 56, $\quad \operatorname{Res}_{z=z_{0}} \frac{p(z)}{q(z)}=\frac{p\left(z_{0}\right)}{g\left(z_{0}\right)}$

$$
\text { But } g\left(z_{0}\right)=q^{\prime}\left(z_{0}\right) \quad=\frac{p\left(z_{0}\right)}{q^{\prime}\left(z_{0}\right)}
$$

Example.

$$
\begin{aligned}
& f(z)=\cot z=\frac{\cos z}{\sin z} \\
& p(z)=\cos z, q(z)=\sin z \text { both entire }
\end{aligned}
$$

The singularities of $f(z)$ occur at zeros of q, or

$$
z=n \pi \quad(n=0, \pm 1, \pm 2, \ldots)
$$

Since $p(n \pi)=(-1)^{n} \neq 0, \quad q(n \pi)=0$, and $q^{\prime}(n \pi)=(-1)^{n} \neq 0$
each singular point $z=n \pi$ of f is a simple pole, with residue $B_{n}=\frac{p(n \pi)}{q^{\prime}(n \pi)}=\frac{(-1)^{n}}{(-1)^{n}}=1$

