Solution of pde's using integral transforms

Introduction

- Integral transforms are used to:
- Simplify solutions by eliminating or reducing order of pde in a particular variable
- Offer physical insight into the problem
- Type of transform depends on BC of problem

Introduction

General form for integral transform

$$
F(s)=\int_{A}^{B} K(s, t) f(t) d t \quad \begin{aligned}
& K(s, t) \text { is the kernel of the transform } \\
& \text { which decides the type of transform. } \\
& f(t) \text { is transformed to } F(s)
\end{aligned}
$$

$$
\mathrm{F}(\mathrm{k})=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp (-\mathrm{ikx}) \mathrm{f}(\mathrm{x}) \mathrm{dx}
$$

Fourier transform (FT) and back transform

Fourier transforms of partial derivatives

- pde's are transformed when integral transforms are applied to the pde and BC

$$
\begin{aligned}
& F\left[u_{x}(x, t)\right]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} u_{x}(x, t) \exp (-i k x) d x=i k F[u(x, t)] \\
& F\left[u_{x x}(x, t)\right]=-k^{2} F[u(x, t)] \\
& F\left[u_{t}(x, t)\right]=\frac{\partial}{\partial t} F[u(x, t)] \\
& F\left[u_{t t}(x, t)\right]=\frac{\partial^{2}}{\partial t^{2}} F[u(x, t)]
\end{aligned}
$$

- The first two results are obtained by integration by parts

Fourier Transform of the wave equation wrt x

$$
\begin{array}{ll}
u_{t t}-c^{2} u_{x x}=0 & \text { pde } \\
u(x, t) \rightarrow 0 \text { as } x \rightarrow \infty & \text { BC } \\
u(x, 0)=\exp \left[-\mathrm{ax}^{2}\right] & \text { IC } \\
\mathrm{F}\left[u_{t t}\right]-c^{2} \mathrm{~F}\left[u_{x x}\right]=0 & \text { FT pde } \\
\mathrm{U}(\mathrm{k}, \mathrm{t})+(\mathrm{ck})^{2} \mathrm{U}(\mathrm{k}, \mathrm{t})=0 & \text { ode in } \mathrm{t} \\
\mathrm{U}(\mathrm{k}, 0)=\mathrm{F}\left[\exp \left(-\mathrm{ax}^{2}\right)\right]=\frac{1}{2 \sqrt{a}} \exp \left(-\mathrm{k}^{2} / 4 \mathrm{a}\right) & \text { FT IC } \\
\mathrm{U}(\mathrm{k}, \mathrm{t})=\mathrm{U}(\mathrm{k}, 0) \exp [-\mathrm{i} \omega \mathrm{t})] & \omega=\mathrm{ck} \\
\mathrm{u}(\mathrm{x}, \mathrm{t})=\int_{-\infty}^{\infty} \mathrm{U}(\mathrm{k}, 0) \exp [\mathrm{i}(\mathrm{kx}-\omega \mathrm{t})] \mathrm{dk} & \text { ode solution } \\
& \text { pde solution }
\end{array}
$$

Sine and cosine transforms Definitions

- The choice of integral transform depends on BC. If we wish to solve a pde with boundaries at $\mathrm{x}=0$ and $\mathrm{x} \rightarrow \infty$ then sine and cosine transforms are appropriate.

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{s}}[\mathrm{u}]==\frac{2}{\pi} \int_{0}^{\infty} \sin (\mathrm{kx}) \mathrm{u}(\mathrm{x}, \mathrm{t}) \mathrm{dx} \\
& \mathrm{~F}_{S}^{-1}[\mathrm{u}]=\mathrm{u}(\mathrm{x}, \mathrm{t})=\int_{0}^{\infty} \sin (\mathrm{kx}) \mathrm{F}_{\mathrm{s}}[\mathrm{u}] \mathrm{dk} \\
& \mathrm{~F}_{\mathrm{c}}[\mathrm{u}]==\frac{2}{\pi} \int_{0}^{\infty} \cos (\mathrm{kx}) \mathrm{u}(\mathrm{x}, \mathrm{t}) \mathrm{dx} \\
& \mathrm{~F}_{\mathrm{c}}^{-1}[\mathrm{u}]=\mathrm{u}(\mathrm{x}, \mathrm{t})=\int_{0}^{\infty} \cos (\mathrm{kx}) \mathrm{F}_{\mathrm{c}}[\mathrm{u}] \mathrm{dk}
\end{aligned}
$$

Transforms of partial derivatives

- These results are obtained using integration by parts to eliminate derivatives from the integrand

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{s}}\left[\mathrm{u}_{\mathrm{x}}\right]=-\mathrm{k}_{\mathrm{c}}[\mathrm{u}] \\
& \mathrm{F}_{\mathrm{s}}\left[\mathrm{u}_{\mathrm{xx}}\right]=-\mathrm{k}^{2} \mathrm{~F}_{\mathrm{s}}[\mathrm{u}]+\frac{2}{\pi} \mathrm{ku}(0, \mathrm{t}) \\
& \mathrm{F}_{\mathrm{c}}\left[\mathrm{u}_{\mathrm{x}}\right]=+\mathrm{kF}_{\mathrm{s}}[\mathrm{u}]-\frac{2}{\pi} \mathrm{u}(0, \mathrm{t}) \\
& \mathrm{F}_{\mathrm{c}}\left[\mathrm{u}_{\mathrm{xx}}\right]=-\mathrm{k}^{2} \mathrm{~F}_{\mathrm{c}}[\mathrm{u}]-\frac{2}{\pi} \mathrm{u}_{\mathrm{x}}(0, \mathrm{t})
\end{aligned}
$$

Convolution Theorem

- Convolution (or resultant or Faltung) of f and $\mathrm{g}\left(\mathrm{f}^{*} \mathrm{~g}\right)$ is defined to be

$$
\mathrm{f} * \mathrm{~g}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{f}(\mathrm{t}-\tau) \mathrm{g}(\tau) \mathrm{d} \tau
$$

- If a function u may be written

$$
\begin{aligned}
& \mathrm{u}=\mathrm{F}[\mathrm{f}] \mathrm{F}[\mathrm{~g}] \\
& \mathrm{F}^{-1}[\mathrm{u}]=\mathrm{F}^{-1}\{\mathrm{~F}[\mathrm{f}] \mathrm{F}[\mathrm{~g}]\}=\mathrm{f}^{*} \mathrm{~g}
\end{aligned}
$$

Its inverse Fourier transform is the convolution of f and g .

- Used for solving pde's when we obtain a solution to a particular problem in terms of products of Fourier transforms

Convolution Theorem
 Example

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\mathrm{x} \quad \mathrm{~g}(\mathrm{x})=\mathrm{e}^{-\mathrm{x}^{2}} \\
& \mathrm{f}^{*} \mathrm{~g}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}(\mathrm{x}-\xi) \mathrm{e}^{-\xi^{2}} \mathrm{~d} \xi \\
& \int_{-\infty}^{\infty} \xi \mathrm{e}^{-\xi^{2}} \mathrm{~d} \xi=0 \text { by symmetry } \\
& \int_{-\infty}^{\infty} \mathrm{e}^{-\xi^{2}} \mathrm{~d} \xi=\sqrt{\pi}
\end{aligned}
$$

Hence $\mathrm{f} * \mathrm{~g}=\frac{\mathrm{x} \sqrt{\pi}}{\sqrt{2 \pi}}=\frac{\mathrm{x}}{\sqrt{2}}$

Application of Fourier, sine and cosine transforms

$$
\begin{array}{ll}
\mathrm{u}_{\mathrm{tt}}=\mathrm{u}_{\mathrm{xx}}+\sin (\pi \mathrm{x}) & 0<\mathrm{x}<1 \\
& 0<\mathrm{t}<\infty \\
\mathrm{u}(0, \mathrm{t})=0 & 0<\mathrm{t}<\infty \\
\mathrm{u}(1, \mathrm{t})=0 & \\
\mathrm{u}(\mathrm{x}, 0)=1 & 0<\mathrm{x}<1 \\
\mathrm{u}_{\mathrm{t}}(\mathrm{x}, 0)=1 &
\end{array}
$$

- We require a finite integral transform for which BC are specified as $u(t)\left(n o t u_{x}(t)\right.$, etc.)

Application of Fourier, sine and cosine transforms

 Finite sine and cosine transforms$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}}(\mathrm{t})=\frac{2}{\mathrm{~L}} \int_{0}^{\mathrm{L}} \sin \left(\frac{\mathrm{n} \pi \mathrm{x}}{\mathrm{~L}}\right) \mathrm{u}(\mathrm{x}, \mathrm{t}) \mathrm{dx} \\
& \mathrm{u}(\mathrm{x}, \mathrm{t})=\sum_{\mathrm{n}=1}^{\infty} \mathrm{S}_{\mathrm{n}}(\mathrm{t}) \sin \left(\frac{\mathrm{n} \pi \mathrm{x}}{\mathrm{~L}}\right) \\
& \mathrm{C}_{\mathrm{n}}(\mathrm{t})=\frac{2}{\mathrm{~L}} \int_{0}^{\mathrm{L}} \cos \left(\frac{\mathrm{n} \pi \mathrm{x}}{\mathrm{~L}}\right) \mathrm{u}(\mathrm{x}, \mathrm{t}) \mathrm{dx} \\
& \mathrm{u}(\mathrm{x}, \mathrm{t})=\sum_{\mathrm{n}=1}^{\infty} \mathrm{C}_{\mathrm{n}}(\mathrm{t}) \cos \left(\frac{\mathrm{n} \pi \mathrm{x}}{\mathrm{~L}}\right)
\end{aligned}
$$

- Note that the range of integration is [0,L] (finite)

Application of Fourier, sine and cosine transforms

 Transforms of partial derivatives$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}}\left[\mathrm{u}_{\mathrm{x}}\right]=-\frac{\mathrm{n} \pi}{\mathrm{~L}} \mathrm{C}_{\mathrm{n}}(\mathrm{t}) \\
& \mathrm{S}_{\mathrm{n}}\left[\mathrm{u}_{\mathrm{xx}}\right]=-\left(\frac{\mathrm{n} \pi}{\mathrm{~L}}\right)^{2} \mathrm{~S}_{\mathrm{n}}(\mathrm{t})+\frac{2 \mathrm{n} \pi}{\mathrm{~L}^{2}}\left[\mathrm{u}(0, \mathrm{t})+(-1)^{\mathrm{n}+1} \mathrm{u}(\mathrm{~L}, \mathrm{t})\right] \\
& \mathrm{C}_{\mathrm{n}}\left[\mathrm{u}_{\mathrm{x}}\right]=\frac{\mathrm{n} \pi}{\mathrm{~L}} \mathrm{~S}_{\mathrm{n}}(\mathrm{t})+\frac{2}{\mathrm{~L}}\left[-\mathrm{u}(0, \mathrm{t})+(-1)^{\mathrm{n}} \mathrm{u}(\mathrm{~L}, \mathrm{t})\right] \\
& \mathrm{C}_{\mathrm{n}}\left[\mathrm{u}_{\mathrm{xx}}\right]=-\left(\frac{\mathrm{n} \pi}{\mathrm{~L}}\right)^{2} \mathrm{C}_{\mathrm{n}}(\mathrm{t})-\frac{2}{\mathrm{~L}}\left[\mathrm{u}_{\mathrm{x}}(0, \mathrm{t})+(-1)^{\mathrm{n}+1} \mathrm{u}_{\mathrm{x}}(\mathrm{~L}, \mathrm{t})\right]
\end{aligned}
$$

- Note that BC enter as $\mathrm{u}(\mathrm{t})$ in $\mathrm{S}\left[\mathrm{u}_{\mathrm{xx}}\right]$ and as $\mathrm{u}_{\mathrm{x}}(\mathrm{t})$ in $\mathrm{C}\left[\mathrm{u}_{\mathrm{xx}}\right]$. The specified BC determine which transform to choose.

Application of Fourier, sine and cosine transforms Solving inhomogeneous BVP using finite sine transform

- $B C$ involve $u(t)$ rather than $u_{x}(t)$ so finite sine transform

1. Transform pde
2. Transform IC
3. Solve resulting ode
4. Back transform
5. Transform pde
$\mathrm{S}\left[\mathrm{u}_{\mathrm{tt}}\right]=\mathrm{S}\left[\mathrm{u}_{\mathrm{xx}}\right]+\mathrm{S}[\sin (\pi \mathrm{x})]$
$\mathrm{S}_{\mathrm{n}}{ }^{\prime \prime}(\mathrm{t})=-(\mathrm{n} \pi)^{2} \mathrm{~S}_{\mathrm{n}}(\mathrm{t})+2 \mathrm{n} \pi\left[\mathrm{u}(0, \mathrm{t})+(-1)^{\mathrm{n}+1} \mathrm{u}(1, \mathrm{t})\right]+\mathrm{S}[\sin (\pi \mathrm{x})]$ $=-(\mathrm{n} \pi)^{2} \mathrm{~S}_{\mathrm{n}}(\mathrm{t})+\mathrm{S}[\sin (\pi \mathrm{x})]$
$\mathrm{S}[\sin (\pi \mathrm{x})]=1 \quad \mathrm{n}=1$
$=0 \quad \mathrm{n}=2,3,4, \ldots$

Application of Fourier, sine and cosine transforms

 Solving inhomogeneous BVP using finite sine transform 2. Transform IC$$
\begin{aligned}
\mathrm{S}[\mathrm{u}(\mathrm{x}, 0)]=\mathrm{S}[1] & =\frac{2}{1} \int_{0}^{\mathrm{L}} \sin \left(\frac{\mathrm{n} \pi \mathrm{x}}{1}\right) .1 \mathrm{dx} \\
& =\frac{4}{\mathrm{n} \pi} \quad \mathrm{n}=1,3,5, \ldots \\
& =0 \quad \mathrm{n}=2,4,6, \ldots
\end{aligned}
$$

$$
\mathrm{S}\left[\mathrm{u}_{\mathrm{t}}(\mathrm{x}, 0)\right]=\mathrm{S}[0]=0 \quad \mathrm{n}=1,2,3, \ldots
$$

Application of Fourier, sine and cosine transforms

 Solving inhomogeneous BVP using finite sine transform3. Solve resulting ode

$$
\begin{array}{rlrl}
\mathrm{S}_{\mathrm{n}} \prime(\mathrm{t})+(\mathrm{n} \pi)^{2} \mathrm{~S}_{\mathrm{n}}(\mathrm{t}) & =1 & & \mathrm{n}=1 \\
& =0 & \mathrm{n}=2,3,4, . . \\
\mathrm{S}_{\mathrm{n}}(0) & =\frac{4}{\mathrm{n} \pi} & & \mathrm{n}=1,3,5, \ldots \\
& =0 & & \mathrm{n}=2,4,6, \ldots \\
\mathrm{~S}_{\mathrm{n}}(\mathrm{t}) & =0 & & \mathrm{n}=1,2,3, \ldots
\end{array}
$$

Application of Fourier, sine and cosine transforms Solving inhomogeneous BVP using finite sine transform

$$
\begin{aligned}
& \hline \mathrm{S}_{1}(\mathrm{t})=\mathrm{A} \cos (\pi \mathrm{t})+\pi^{-2} \\
& \mathrm{~S}_{\mathrm{n}}(\mathrm{t})=0 \\
& \mathrm{~S}_{\mathrm{n}}(\mathrm{t})=4(\mathrm{n} \pi)^{-1} \cos (\mathrm{n} \pi \mathrm{t})
\end{aligned}
$$

$$
\mathrm{S}_{\mathrm{n}}(\mathrm{t})=0 \quad \mathrm{n}=2,4,6, \ldots \text { solution }
$$

$$
\mathrm{S}_{1}(0)=\mathrm{A}+\pi^{-2}=4 \pi^{-1} \quad \mathrm{~A}=(4 \pi-1) \pi^{-2}
$$

$$
\mathrm{S}_{\mathrm{n}}(0)=0
$$

$$
\mathrm{n}=2,4,6, \ldots \quad \text { IC satisfied }
$$

$$
\mathrm{S}_{\mathrm{n}}(0)=4(\mathrm{n} \pi)^{-1}
$$

$$
\mathrm{S}_{1}^{\prime}(0)=-\mathrm{A} \pi \sin (\pi 0) \quad=0
$$

$$
\mathrm{S}_{\mathrm{n}}{ }^{\prime}(0)=0
$$

$$
\mathrm{S}_{\mathrm{n}}^{\prime}{ }^{\prime}(0)=-4 \sin (\mathrm{n} \pi 0) \quad=0 \quad \mathrm{n}=3,5,7, \ldots
$$

ode satisfied

$$
\begin{aligned}
\mathrm{S}_{\mathrm{n}}{ }^{\prime \prime}(\mathrm{t})+(\mathrm{n} \pi)^{2} \mathrm{~S}_{\mathrm{n}}(\mathrm{t}) & =-\mathrm{A} \pi^{2} \cos (\pi \mathrm{t})+\mathrm{A} \pi^{2} \cos (\pi \mathrm{t})+1 \mathrm{n}=1 \\
& =-4 \mathrm{n} \pi \cos (\mathrm{n} \pi \mathrm{t})+4 \mathrm{n} \pi \cos (\mathrm{n} \pi \mathrm{t}) \quad \mathrm{n}=3,5,
\end{aligned}
$$

Application of Fourier, sine and cosine transforms

 Solving inhomogeneous BVP using finite sine transform4. Back transform

$$
\begin{aligned}
\mathrm{u}(\mathrm{x}, \mathrm{t})= & \sum_{\mathrm{n}=1}^{\infty} \mathrm{S}_{\mathrm{n}}(\mathrm{t}) \sin \left(\frac{\mathrm{n} \pi \mathrm{x}}{1}\right) \\
= & {\left[\mathrm{A} \cos (\pi \mathrm{t})+\pi^{-2}\right] \sin (\pi \mathrm{x})+} \\
& \frac{4}{\pi} \sum_{\mathrm{n}=1}^{\infty} \frac{1}{2 \mathrm{n}+1} \cos [(2 \mathrm{n}+1) \pi \mathrm{t}] \sin [(2 \mathrm{n}+1) \pi \mathrm{x}]
\end{aligned}
$$

Summary of Integral Transforms

Kernel	Boundary Conditions	Restrictions
$\exp (\mathrm{ikx})$	$\mathrm{u}(\mathrm{x}, \mathrm{t}) \rightarrow 0$ as $\mathrm{x} \rightarrow \pm \infty$	No FT exists for many functions
$\sin (\mathrm{kx})$	$\begin{aligned} & \mathrm{u}(0, \mathrm{t})=\mathrm{f}(\mathrm{t}) \\ & \mathrm{u}(\mathrm{x}, \mathrm{t}) \rightarrow 0 \text { as } \mathrm{x} \rightarrow \pm \infty \end{aligned}$	PDE must have no $1^{\text {st }}$ order derivatives wrt x
$\cos (\mathrm{kx})$	$\begin{aligned} & \mathrm{u}_{\mathrm{x}}(0, \mathrm{t})=\mathrm{f}(\mathrm{t}) \\ & \mathrm{u}(\mathrm{x}, \mathrm{t}) \rightarrow 0 \text { as } \mathrm{x} \rightarrow \pm \infty \end{aligned}$	PDE must have no $1^{\text {st }}$ order derivatives wrt x
finite sine	$\mathrm{u}(0, \mathrm{t}), \mathrm{u}(\mathrm{L}, \mathrm{t})$	no mixed BC
finite cosine	$\mathrm{u}_{\mathrm{x}}(0, \mathrm{t}), \mathrm{u}_{\mathrm{x}}(\mathrm{L}, \mathrm{t})$	no mixed BC
$\exp (-s t)$	$\begin{aligned} & \mathrm{u}(0, \mathrm{t}), \mathrm{u}_{\mathrm{x}}(0, \mathrm{t}) \\ & \mathrm{u}(\mathrm{x}, \mathrm{t}) \rightarrow 0 \text { as } \mathrm{x} \rightarrow \pm \infty \end{aligned}$ $B C$ can be mixed	$u(x, t)$ does not grow faster than exponentially for $t>T$

