Complex Fourier Transforms

Engineering Mathematics III

Complex Fourier transform

\square Consider the expression

$$
\begin{aligned}
f(t) & =\sum_{n=-\infty}^{\infty} F_{n} e^{i n \omega_{0} t}=\sum_{n=-\infty}^{\infty} F_{n} \cos \left(n \omega_{0} t\right)+i F_{n} \sin \left(n \omega_{0} t\right) \\
& =\sum_{n=0}^{\infty}\left(F_{n}+F_{-n}\right) \cos \left(n \omega_{0} t\right)+i\left(F_{n}-F_{-n}\right) \sin \left(n \omega_{0} t\right)
\end{aligned}
$$

\square So $\quad a_{n}=F_{n}+F_{-n} \quad$ and $\quad b_{n}=i\left(F_{n}-F_{-n}\right)$
\square Since a_{n} and b_{n} are real, we can let $F_{-n}=\overline{F_{n}}$ and get $a_{n}=2 \operatorname{Re}\left(F_{n}\right)$ and $b_{n}=-2 \operatorname{Im}\left(F_{n}\right)$

$$
\operatorname{Re}\left(F_{n}\right)=\frac{a_{n}}{2} \quad \text { and } \quad \operatorname{Im}\left(F_{n}\right)=-\frac{b_{n}}{2}
$$

-Thus

$$
\begin{aligned}
F_{n} & \left.=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} f(t) \cos \left(n \omega_{0} t\right) d t-i \int_{t_{0}}^{t_{0}+T} f(t) \sin \left(n \omega_{0} t\right) d t\right) \\
& =\frac{1}{T} \int_{i_{0}}^{t_{0}+T} f(t)\left(\cos \left(n \omega_{0} t\right) d t-i \sin \left(n \omega_{0} t\right)\right) d t \\
& =\frac{1}{T} \int_{t_{0}}^{t_{0}+T} f(t) e^{-i n \omega_{0} t} d t \\
& =\left|F_{n}\right| e^{i \varphi_{n}}
\end{aligned}
$$

\square So you could also write $f(t)=\sum_{n=-\infty}^{\infty} \mid F_{n} e^{i\left(n \sigma_{s}+t \theta_{n}\right)}$

The Fourier transform $G(k)$ and the original function $g(x)$ are both in general complex.

$$
\mathfrak{J}\{g(x)\}=G_{r}(k)+i G_{i}(k)
$$

The Fourier transform can be written as,

$$
\begin{aligned}
& \mathfrak{J}\{g(x)\}=G(k)=A(k) e^{i \Theta(k)} \\
& A=|G|=\sqrt{G_{r}^{2}+G_{i}^{2}}
\end{aligned}
$$

$A \equiv$ amplitude spectrum, or magnitude spectrum
$\Theta \equiv$ phase spectrum
$\mathrm{A}^{2}=|G|^{2}=G_{r}^{2}+G_{i}^{2} \equiv$ power spectrum

