Inverse Fourier Transform

Fourier Transform and Its Inverse

- Writing the exponential function in (4) as a product of exponential functions, we have
(5) $f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left[\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(v) e^{-i w v} d v\right] e^{i w x} d w$.

The expression in brackets is a function of w, is denoted by $\hat{f}(w)$ and is called the Fourier transform of f; writing $v=x$, we have
(6)

$$
\hat{f}(w)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i w x} d x .
$$

With this, (5) becomes
(7) $\quad f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{f}(w) e^{i w x} d w$
and is called the inverse Fourier transform of $\hat{f}(w)$

- Another notation for the Fourier transform is
so that

$$
\hat{f}=\mathscr{F}(f), \quad f=\mathscr{F}^{-1}(\hat{f}) .
$$

- The process of obtaining the Fourier transform

$$
F(f)=f
$$

from a given f is also called the Fourier transform or the Fourier transform method.

Table of Fourier Transforms

$f(x)$	$\hat{f}(\omega)$
1. $\frac{1}{x^{2}+a^{2}} \quad(a>0)$	$\frac{\pi}{a} e^{-a\|\omega\|}$
2. $H(x) e^{-u x} \quad(\operatorname{Re} a>0)$	$\frac{1}{a+i \omega}$
3. $H(-x) e^{a x} \quad(\operatorname{Re} a>0)$	
4. $e^{-a\|x\|} \quad(a>0)$	$\frac{2 a}{\omega^{2}+a^{2}}$
5. $e^{-x^{2}}$	$\sqrt{\pi} e^{-\omega^{2} / 4}$
6. $\frac{1}{2 a \sqrt{\pi}} e^{-x^{2} /(2 a)^{2}} \quad(a>0)$	$e^{-a^{2} \omega^{2}}$
7. $\frac{1}{\sqrt{\|x\|}}$	$\sqrt{\frac{2 \pi}{\|\omega\|}}$
8. $e^{-u\|x\| / \sqrt{2}} \sin \left(\frac{a}{\sqrt{2}}\|x\|+\frac{\pi}{4}\right) \quad(a>0)$	$\frac{2 a^{3}}{\omega^{4}+a^{4}}$
9. $H(x+a)-H(x-a)$	$\frac{2 \sin \omega a}{\omega}$

