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Probability distributions 

 We use probability 

distributions because 

they work –they fit lots 

of  data in real world 
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Random variable 

 The mathematical rule (or function) that assigns 

a given numerical value to each possible 

outcome of  an experiment in the sample space 

of  interest. 
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Types of  Random variables  

 Discrete random variables 

 

 Continuous random variables 

Engineering Mathematics III 



The Binomial Distribution 
Bernoulli Random Variables 

 Imagine a simple trial with only two possible outcomes 

 Success (S) 

 Failure (F) 

 

 

 Examples 

 Toss of  a coin (heads or tails) 

 Sex of  a newborn (male or female) 

 Survival of  an organism in a region (live or die) 

Jacob Bernoulli (1654-1705) 
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The Binomial Distribution 
Overview 

 Suppose that the probability of  success is p 

 

 What is the probability of  failure? 

 q = 1 – p 

 

 Examples 

 Toss of  a coin (S = head): p = 0.5  q = 0.5 

 Roll of  a die (S = 1): p = 0.1667  q = 0.8333 

 Fertility of  a chicken egg (S = fertile): p = 0.8  q = 0.2 
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The Binomial Distribution 
Overview 

 Imagine that a trial is repeated n times 

 

 Examples 

 A coin is tossed 5 times 

 A die is rolled 25 times 

 50 chicken eggs are examined 

 

 Assume p remains constant from trial to trial and that the trials 

are statistically independent of  each other 
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The Binomial Distribution 
Overview 

 What is the probability of  obtaining x successes in n trials? 

 

 Example 

 What is the probability of  obtaining 2 heads from a coin that 

was tossed 5 times? 

 

 P(HHTTT) = (1/2)5  = 1/32 
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The Binomial Distribution 
Overview 

 But there are more possibilities: 

 

  HHTTT HTHTT HTTHT HTTTH 

    THHTT THTHT THTTH 

      TTHHT TTHTH 

        TTTHH 

 

 P(2 heads) = 10 × 1/32 = 10/32 
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The Binomial Distribution 
Overview 

 In general, if  trials result in a series of  success and failures, 

 

 FFSFFFFSFSFSSFFFFFSF… 

 

 Then the probability of  x successes in that order is 

 

  P(x) = q  q  p  q   

   = px  qn – x 
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The Binomial Distribution 
Overview 

 However, if  order is not important, then 

 

 

 

 

 where                     is the number of  ways to obtain x successes 

 

 in n trials, and i! = i  (i – 1)  (i – 2)  …  2  1 

n! 

x!(n – x)! 
px  qn – x P(x) = 

n! 

x!(n – x)! 
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The Binomial Distribution 
Overview 
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The Poisson Distribution 
Overview 

 When there is a large number of  

trials, but a small probability of  

success, binomial calculation 

becomes impractical 

 Example: Number of  deaths 

from horse kicks in the Army in 

different years 

 

 The mean number of  successes from 

n trials is µ = np 

 Example: 64 deaths in 20 years 

from thousands of  soldiers 

Simeon D. Poisson (1781-1840) 
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The Poisson Distribution 
Overview 

 If  we substitute µ/n for p, and let n tend to infinity, the binomial 

distribution becomes the Poisson distribution: 

 

P(x) = 
e -µµx 

x! 
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The Poisson Distribution 
Overview 

 Poisson distribution is applied where random events in space or 

time are expected to occur 

 

 Deviation from Poisson distribution may indicate some degree 

of  non-randomness in the events under study 

 

 Investigation of  cause may be of  interest 
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The Poisson Distribution 
Emission of  -particles 

 Rutherford, Geiger, and Bateman (1910) counted the number of  

-particles emitted by a film of  polonium in 2608 successive 
intervals of  one-eighth of  a minute 

 What is n? 

 What is p? 

 

 Do their data follow a Poisson distribution? 
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The Poisson Distribution 
Emission of  -particles 

No. -particles Observed 

 0  57 

 1  203 

 2  383 

 3  525 

 4  532 

 5  408 

 6  273 

 7  139 

 8  45 

 9  27 

 10  10 

 11  4 

 12  0 

 13  1 

 14  1 

 Over 14  0 

 Total  2608 

 Calculation of  µ: 

 

  µ = No. of  particles per interval 

   = 10097/2608 

   = 3.87 

 

 Expected values: 

 

 2680  P(x) = 
e -3.87(3.87)x 

x! 
2608  
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The Poisson Distribution 
Emission of  -particles 

No. -particles Observed Expected 

 0  57  54 

 1  203  210 

 2  383  407 

 3  525  525 

 4  532  508 

 5  408  394 

 6  273  254 

 7  139  140 

 8  45  68 

 9  27  29 

 10  10  11 

 11  4  4 

 12  0  1 

 13  1  1 

 14  1  1 

 Over 14  0  0 

 Total  2608  2680 
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The Poisson Distribution 
Emission of  -particles 

Random events 

Regular events 

Clumped events 
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The Poisson Distribution 
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The Expected Value of  a Discrete 

Random Variable 
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The Variance of  a Discrete Random 

Variable 
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Uniform random variables  
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The Expected Value of  a continuous 

Random Variable 
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The Normal Distribution 
Overview 

 Discovered in 1733 by de Moivre as an approximation to the 

binomial distribution when the number of  trails is large 

 

 Derived in 1809 by Gauss 

 

 Importance lies in the Central Limit Theorem, which states that the 

sum of  a large number of  independent random variables (binomial, 

Poisson, etc.) will approximate a normal distribution 

 

 Example: Human height is determined by a large number of  

factors, both genetic and environmental, which are additive in 

their effects. Thus, it follows a normal distribution. 

Karl F. Gauss 

(1777-1855) 

Abraham de Moivre 

(1667-1754) 
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The Normal Distribution 
Overview 

 A continuous random variable is said to be normally distributed 

with mean  and variance 2 if  its probability density function is 

 

 

 

 

 f(x) is not the same as P(x) 

 P(x) would be 0 for every x because the normal distribution 

is continuous 

 However, P(x1 < X ≤ x2) =       f(x)dx 

f  (x) 

= 

1 

2 

(x  )2/22 

e 

 
x1 

x2 
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The Normal Distribution 
Overview 
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The Normal Distribution 
Overview 
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The Normal Distribution 
Overview 

Mean changes Variance changes 
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The Normal Distribution 
 

 A sample of  rock cod in Monterey Bay suggests that the mean 

length of  these fish is  = 30 in. and 2 = 4 in. 

 

 Assume that the length of  rock cod is a normal random variable 

 

 If  we catch one of  these fish in Monterey Bay, 

 What is the probability that it will be at least 31 in. long? 

 That it will be no more than 32 in. long? 

 That its length will be between 26 and 29 inches? 
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The Normal Distribution 

 What is the probability that it will be at least 31 in. long? 
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The Normal Distribution 
 

 That it will be no more than 32 in. long? 
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The Normal Distribution 
 

 That its length will be between 26 and 29 inches? 
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 μ=0 and σ2=1 
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Useful properties of  the normal 

distribution 

1. The normal distribution has useful 

properties: 

 Can be added E(X+Y)= E(X)+E(Y) 

and σ2(X+Y)= σ2(X)+ σ2(Y) 

 Can be transformed with shift and 

change of  scale operations 
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Consider two random variables X and Y 

Let X~N(μ,σ) and let Y=aX+b where a and b area 
constants 

Change of  scale is the operation of  multiplying X by a 
constant “a” because one unit of  X becomes “a” units 
of  Y. 

Shift is the operation of  adding a constant “b” to X 
because we simply move our random variable X “b” 
units along the x-axis. 

If  X is a normal random variable, then the new random 
variable Y created by this operations on X is also a 
random normal variable  
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For X~N(μ,σ) and Y=aX+b 

 E(Y) =aμ+b 

 σ2(Y)=a2 σ2 

 A special case of  a change of  scale and shift 

operation in which a = 1/σ and b =-1(μ/σ) 

 Y=(1/σ)X-μ/σ 

 Y=(X-μ)/σ gives 

 E(Y)=0 and σ2(Y) =1 
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The Central Limit Theorem 

 That Standardizing any random variable that 
itself  is a sum or average of  a set of  
independent random variables results in a new 
random variable that is nearly the same as a 
standard normal one. 

 The only caveats are that the sample size must 
be large enough and that the observations 
themselves must be independent and all drawn 
from a distribution with common expectation 
and variance. 
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