The Binomial, Poisson,

 and Normal Distributions
Probability distributions

- We use probability distributions because they work -they fit lots of data in real world

Height (cm) of Hypericum cumulicola at Archbold Biological Station

Random variable

- The mathematical rule (or function) that assigns a given numerical value to each possible outcome of an experiment in the sample space of interest.

Types of Random variables

- Discrete random variables
- Continuous random variables

The Binomial Distribution Bernoulli Random Variables

- Imagine a simple trial with only two possible outcomes
- Success (S)
- Failure (F)
- Examples
- Toss of a coin (heads or tails)
- Sex of a newborn (male or female)

Jacob Bernoulli (1654-1705)

- Survival of an organism in a region (live or die)

The Binomial Distribution Overview

- Suppose that the probability of success is p
- What is the probability of failure?
- $q=1-p$
- Examples
- Toss of a coin ($S=$ head): $p=0.5 \Rightarrow q=0.5$
- Roll of a die $(S=1): p=0.1667 \Rightarrow q=0.8333$
- Fertility of a chicken $\operatorname{egg}(S=$ fertile $): p=0.8 \Rightarrow q=0.2$

The Binomial Distribution Overview

- Imagine that a trial is repeated n times
- Examples
- A coin is tossed 5 times
- A die is rolled 25 times
- 50 chicken eggs are examined
- Assume p remains constant from trial to trial and that the trials are statistically independent of each other

The Binomial Distribution Overview

- What is the probability of obtaining x successes in n trials?
- Example
- What is the probability of obtaining 2 heads from a coin that was tossed 5 times?

$$
P(H H T T T)=(1 / 2)^{5}=1 / 32
$$

The Binomial Distribution Overview

- But there are more possibilities:

HHT'T	HTHT'T	HTTHT	HTT'TH
	THHT'	THTHT	THTTH
		TTHHT	TTHTH
			TTTHH

$$
P(2 \text { heads })=10 \times 1 / 32=10 / 32
$$

The Binomial Distribution Overview

- In general, if trials result in a series of success and failures,
FFSFFFFSFSFSSFFFFFSF...

Then the probability of x successes in that order is

$$
\begin{aligned}
P(x) & =q \cdot q \cdot p \cdot q \cdot \ldots \\
& =p^{x} \cdot q^{n-x}
\end{aligned}
$$

The Binomial Distribution

 Overview

 Overview}

- However, if order is not important, then

$$
P(x)=\frac{n!}{x!(n-x)!} p^{x} \cdot q^{n-x}
$$

where $\frac{n!}{x!(n-x)!}$ is the number of ways to obtain x successes
in n trials, and $\lambda=i \cdot(i-1) \cdot(i-2) \cdot \ldots \cdot 2 \cdot 1$

The Binomial Distribution

Overview

Engineering Mathematics III

The Poisson Distribution

Overview

- When there is a large number of trials, but a small probability of success, binomial calculation becomes impractical
- Example: Number of deaths from horse kicks in the Army in different years

Simeon D. Poisson (1781-1840)

- The mean number of successes from n trials is $\mu=n p$
- Example: 64 deaths in 20 years from thousands of soldiers

The Poisson Distribution
 Overview

- If we substitute μ / n for p, and let n tend to infinity, the binomial distribution becomes the Poisson distribution:

$$
P(x)=\frac{e^{-\mu} \mu^{x}}{x!}
$$

The Poisson Distribution
 Overview

- Poisson distribution is applied where random events in space or time are expected to occur
- Deviation from Poisson distribution may indicate some degree of non-randomness in the events under study
- Investigation of cause may be of interest

The Poisson Distribution Emission of α-particles

- Rutherford, Geiger, and Bateman (1910) counted the number of α-particles emitted by a film of polonium in 2608 successive intervals of one-eighth of a minute
- What is n?
- What is p ?
- Do their data follow a Poisson distribution?

The Poisson Distribution Emission of α-particles

- Calculation of μ :

$$
\begin{aligned}
\mu & =\text { No. of particles per interval } \\
& =10097 / 2608 \\
& =3.87
\end{aligned}
$$

No. α-particles	Observed
0	57
1	203
2	383
3	525
4	532
5	408
6	273
7	139
8	45
9	27
10	10
11	4
12	0
13	1
14	1
Over 14	0
Total	2608

The Poisson Distribution Emission of α-particles

No. α-particles	Observed	Expected
0	57	54
1	203	210
2	383	407
3	525	525
4	532	508
5	408	394
6	273	254
7	139	140
8	45	68
9	27	29
10	10	11
11	4	4
12	0	1
13	1	1
14	1	1
Over 14	0	0
Total	Engineering Mathematics III	2680

The Poisson Distribution Emission of α-particles

Random events

Regular events

 Clumped events

The Poisson Distribution

Engineering Mathematics III

The Expected Value of a Discrete Random Variable

$$
E(X)=\sum_{i=1}^{n} a_{i} p_{i}=a_{1} p_{1}+a_{2} p_{2}+\ldots+a_{n} p_{n}
$$

The Variance of a Discrete Random Variable

$$
\begin{gathered}
\sigma^{2}(X)=E[X-E(X)]^{2} \\
=\sum_{i=1}^{n} p_{i}\left(a_{i}-\sum_{i=1}^{n} a_{i} p_{i}\right)^{2}
\end{gathered}
$$

Engineering Mathematics III

Uniform random variables

- The closed unit interval, which contains all numbers between 0 and 1 , including the two end points 0 and 1

The Expected Value of a continuous Random Variable

$$
E(X)=\int x f(x) d x
$$

For an uniform random variable x, where $f(x)$ is defined on the interval [a,b], and where $\mathrm{a}<\mathrm{b}$,

$$
E(X)=(b+a) / 2 \text { and } \sigma^{2}(X)=\frac{(b-a)^{2}}{12}
$$

The Normal Distribution Overview

- Discovered in 1733 by de Moivre as an approximation to the binomial distribution when the number of trails is large
- Derived in 1809 by Gauss

Abraham de Moivre (1667-1754)

- Importance lies in the Central Limit Theorem, which states that the sum of a large number of independent random variables (binomial, Poisson, etc.) will approximate a normal distribution
- Example: Human height is determined by a large number of factors, both genetic and environmental, which are additive in their effects. Thus, it follows a normal distribution.

Karl F. Gauss
(1777-1855)

The Normal Distribution
 Overview

- A continuous random variable is said to be normally distributed with mean μ and variance σ^{2} if its probability density function is

$$
\begin{aligned}
& f(x) \frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
\end{aligned}
$$

- $f(x)$ is not the same as $P(x)$
- $P(x)$ would be 0 for every x because the normal distribution is continuous
- However, $P\left(x_{1}<X \leq x_{2}\right)=\int_{x_{1}}^{x_{2}} f(x) d x$

The Normal Distribution
 Overview

Engineering Mathematics III

The Normal Distribution
 Overview

Engineering Mathematics III

The Normal Distribution Overview

Mean changes

Variance changes

The Normal Distribution

- A sample of rock cod in Monterey Bay suggests that the mean length of these fish is $\mu=30 \mathrm{in}$. and $\sigma^{2}=4 \mathrm{in}$.
- Assume that the length of rock cod is a normal random variable
- If we catch one of these fish in Monterey Bay,
- What is the probability that it will be at least 31 in . long?
- That it will be no more than 32 in. long?
- That its length will be between 26 and 29 inches?

The Normal Distribution

- What is the probability that it will be at least 31 in . long?

The Normal Distribution

- That it will be no more than 32 in. long?

The Normal Distribution

- That its length will be between 26 and 29 inches?

Standard Normal Distribution

- $\mu=0$ and $\sigma^{2}=1$

Engineering Mathematics III

Useful properties of the normal distribution

1. The normal distribution has useful properties:

- Can be added $\mathrm{E}(\mathrm{X}+\mathrm{Y})=\mathrm{E}(\mathrm{X})+\mathrm{E}(\mathrm{Y})$ and $\sigma 2(\mathrm{X}+\mathrm{Y})=\sigma 2(\mathrm{X})+\sigma 2(\mathrm{Y})$
- Can be transformed with shift and change of scale operations

Consider two random variables \mathbf{X} and \mathbf{Y}

Let $\mathrm{X} \sim \mathrm{N}(\mu, \sigma)$ and let $\mathrm{Y}=\mathrm{aX}+\mathrm{b}$ where a and b area constants
Change of scale is the operation of multiplying X by a constant " a " because one unit of X becomes " a " units of Y.
Shift is the operation of adding a constant " b " to X because we simply move our random variable X " b " units along the x -axis.
If X is a normal random variable, then the new random variable Y created by this operations on X is also a random normal variable

For $X \sim N(\mu, \sigma)$ and $Y=a X+b$

- $\mathrm{E}(\mathrm{Y})=a \mu+\mathrm{b}$
- $\sigma^{2}(\mathrm{Y})=a^{2} \sigma^{2}$
- A special case of a change of scale and shift operation in which $a=1 / \sigma$ and $b=-1(\mu / \sigma)$
- $\mathrm{Y}=(1 / \sigma) \mathrm{X}-\mu / \sigma$
- $\mathrm{Y}=(\mathrm{X}-\mu) / \sigma$ gives
- $\mathrm{E}(\mathrm{Y})=0$ and $\sigma^{2}(\mathrm{Y})=1$

The Central Limit Theorem

- That Standardizing any random variable that itself is a sum or average of a set of independent random variables results in a new random variable that is nearly the same as a standard normal one.
- The only caveats are that the sample size must be large enough and that the observations themselves must be independent and all drawn from a distribution with common expectation and variance.

