The Binomial, Poisson, and Normal Distributions

Probability distributions

We use probability distributions because they work —they fit lots of data in real world

Height (cm) of *Hypericum cumulicola* at Archbold Biological Station

Random variable

The mathematical rule (or function) that assigns a given numerical value to each possible outcome of an experiment in the sample space of interest.

Types of Random variables

Discrete random variables

Continuous random variables

The Binomial Distribution Bernoulli Random Variables

Imagine a simple trial with only two possible outcomes

- Success (S)
- Failure (F)

Examples

- Toss of a coin (heads or tails)
- Sex of a newborn (male or female)
- Survival of an organism in a region (live or die)

Jacob Bernoulli (1654-1705)

Suppose that the probability of success is p

What is the probability of failure? *q* = 1 − *p*

Examples

• Toss of a coin (S = head): $p = 0.5 \Rightarrow q = 0.5$

• Roll of a die (S = 1): $p = 0.1667 \Rightarrow q = 0.8333$

• Fertility of a chicken egg (S = fertile): $p = 0.8 \Rightarrow q = 0.2$

■ Imagine that a trial is repeated *n* times

Examples
A coin is tossed 5 times
A die is rolled 25 times
50 chicken eggs are examined

Assume *p* remains constant from trial to trial and that the trials are statistically independent of each other

■ What is the probability of obtaining *x* successes in *n* trials?

Example

What is the probability of obtaining 2 heads from a coin that was tossed 5 times?

 $P(HHTTT) = (1/2)^5 = 1/32$

But there are more possibilities:

 HHTTT
 HTHTT
 HTTTH

 THHTT
 THTHT
 THTTH

 THHTT
 THTHT
 THTTH

 TTHHT
 TTTHTH
 TTTHTH

 $P(2 \text{ heads}) = 10 \times 1/32 = 10/32$

In general, if trials result in a series of success and failures,

FFSFFFFSFSFSFSFFFFFSF...

Then the probability of x successes in that order is

$$P(x) = q \cdot q \cdot p \cdot q \cdot \dots$$
$$= p^{x} \cdot q^{n-x}$$

Below However, if order is not important, then

$$P(x) = \frac{n!}{x!(n-x)!} p^{x} \cdot q^{n-x}$$

where $\frac{n!}{x!(n-x)!}$ is the number of ways to obtain x successes

in *n* trials, and $i! = i \cdot (i-1) \cdot (i-2) \cdot \ldots \cdot 2 \cdot 1$

The Binomial Distribution

Overview

The Poisson Distribution

Overview

- When there is a large number of trials, but a small probability of success, binomial calculation becomes impractical
 - Example: Number of deaths from horse kicks in the Army in different years

Simeon D. Poisson (1781-1840)

- The mean number of successes from n trials is $\mu = np$
 - Example: 64 deaths in 20 years from thousands of soldiers

The Poisson Distribution Overview

If we substitute μ/n for p, and let n tend to infinity, the binomial distribution becomes the Poisson distribution:

$$P(x) = \frac{e^{-\mu}\mu^{x}}{x!}$$

The Poisson Distribution Overview

- Poisson distribution is applied where random events in space or time are expected to occur
- Deviation from Poisson distribution may indicate some degree of non-randomness in the events under study

Investigation of cause may be of interest

Rutherford, Geiger, and Bateman (1910) counted the number of α-particles emitted by a film of polonium in 2608 successive intervals of one-eighth of a minute

- What is n?
- What is p?

Do their data follow a Poisson distribution?

	No. α -particles	Observed
- Calculation of u :	0	57
	1	203
	2	383
$\mu = No$ of particles per interval	3	525
$\mu = 100.01$ particles per litter var	4	532
= 10097/2608	5	408
-3.87	6	273
- 3.07	7	139
	8	45
Expected values:	9	27
	10	10
	11	4
$2680 \times P(x) = 2608 \times e^{-3.87} (3.87)^{x}$	12	0
$2000 \times I(x) = 2000 \times $	13	1
\mathcal{X}_{\bullet}	14	1
	Over 14	0
Engineering Mathematics III	Total	2608

No. α-pa	rticles	Observed	Expected
0		57	54
1		203	210
2		383	407
3		525	525
4		532	508
5		408	394
6		273	254
7		139	140
8		45	68
9		27	29
10		10	11
11		4	4
12		0	1
13		1	1
14		1	1
Over 14		0	0
Total	Engineeri	2608 ng Mathematics III	2680

Random events

Regular events

Clumped events

The Poisson Distribution

The Expected Value of a Discrete Random Variable

$E(X) = \sum_{i=1}^{n} a_i p_i = a_1 p_1 + a_2 p_2 + \dots + a_n p_n$

The Variance of a Discrete Random Variable

 $\sigma^2(X) = E[X - E(X)]^2$

Uniform random variables

The closed unit interval, which contains all numbers between 0 and 1, including the two end points 0 and 1

 $f(x) = \begin{cases} 1/10, 0 \le x \le 10\\ 0, otherwise \end{cases}$

The probability density function

The Expected Value of a continuous Random Variable

 $E(X) = \int x f(x) dx$

For an uniform random variable x, where f(x) is defined on the interval [a,b], and where a<b,

E(X) = (b+a)/2 and $\sigma^2(X) = \frac{(b-a)^2}{12}$

- Discovered in 1733 by de Moivre as an approximation to the binomial distribution when the number of trails is large
- Derived in 1809 by Gauss
- Importance lies in the Central Limit Theorem, which states that the sum of a large number of independent random variables (binomial, Poisson, etc.) will approximate a normal distribution
 - Example: Human height is determined by a large number of factors, both genetic and environmental, which are additive in their effects. Thus, it follows a normal distribution.

Karl F. Gauss (1777-1855)

A <u>continuous</u> random variable is said to be normally distributed with mean μ and variance σ^2 if its probability <u>density</u> function is

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}$$

 \square f(x) is not the same as P(x)

P(x) would be 0 for every x because the normal distribution is continuous

• However,
$$P(x_1 < X \le x_2) = \int_{x_1}^{x_2} f(x) dx$$

A sample of rock cod in Monterey Bay suggests that the mean length of these fish is $\mu = 30$ in. and $\sigma^2 = 4$ in.

Assume that the length of rock cod is a normal random variable

If we catch one of these fish in Monterey Bay,

- What is the probability that it will be at least 31 in. long?
- That it will be no more than 32 in. long?
- That its length will be between 26 and 29 inches?

■ What is the probability that it will be at least 31 in. long?

Engineering Mathematics III

■ That it will be no more than 32 in. long?

Engineering Mathematics III

■ That its length will be between 26 and 29 inches?

Engineering Mathematics III

Standard Normal Distribution

• $\mu=0$ and $\sigma^2=1$

Useful properties of the normal distribution

- 1. The normal distribution has useful properties:
 - Can be added E(X+Y) = E(X) + E(Y)and $\sigma 2(X+Y) = \sigma 2(X) + \sigma 2(Y)$
 - Can be transformed with *shift* and *change of scale* operations

Consider two random variables X and Y

Let $X \sim N(\mu, \sigma)$ and let Y=aX+b where a and b area constants

- Change of scale is the operation of multiplying X by a constant "a" because one unit of X becomes "a" units of Y.
- *Shift* is the operation of adding a constant "*b*" to X because we simply move our random variable X "b" units along the x-axis.
- If X is a normal random variable, then the new random variable Y created by this operations on X is also a random normal variable

For $X \sim N(\mu, \sigma)$ and Y = aX + b

- \blacksquare E(Y) =aµ+b
- $\Box \sigma^2(Y) \equiv a^2 \sigma^2$
- A special case of a change of scale and shift operation in which a = 1/σ and b =-1(μ/σ)
 Y=(1/σ)X-μ/σ
 Y=(X-μ)/σ gives
 E(Y)=0 and σ²(Y) =1

The Central Limit Theorem

- That Standardizing any random variable that itself is a sum or average of a set of independent random variables results in a new random variable that is nearly the same as a standard normal one.
- The only caveats are that the sample size must be large enough and that the observations themselves must be independent and all drawn from a distribution with common expectation and variance.