SOLUTION OF SYSTEM OF LINEAR EQUATIONS

Solution of linear system of equations

- Numerical solution of differential equations (Finite Difference Method)
- Numerical solution of integral equations (Finite Element Method, Method of Moments)

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{gathered} \Rightarrow\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

Consistency (Solvability)

- The linear system of equations $A x=b$ has a solution, or said to be consistent IFF

$$
\operatorname{Rank}\{A\}=\operatorname{Rank}\{A \mid b\}
$$

- A system is inconsistent when

Rank $\{\mathrm{A}\}<\operatorname{Rank}\{\mathrm{A} \mid \mathrm{b}\}$

Rank $\{A\}$ is the maximum number of linearly independent columns or rows of A. Rank can be found by using ERO (Elementary Row Oparations) or ECO (Elementary column operations).
$\mathrm{ERO} \Rightarrow \#$ of rows with at least one nonzero entry $\mathrm{ECO} \Rightarrow \#$ of columns with at least one nonzero entry

Elementary row operations

- The following operations applied to the augmented matrix [A|b], yield an equivalent linear system
- Interchanges: The order of two rows can be changed
- Scaling: Multiplying a row by a nonzero constant
- Replacement: The row can be replaced by the sum of that row and a nonzero multiple of any other row.

An inconsistent example

$$
\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
4 \\
5
\end{array}\right]
$$

ERO:Multiply the first row with
-2 and add to the second row

$$
\begin{array}{ll}
{\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]} & \operatorname{Rank}\{A\}=1 \\
{\left[\begin{array}{ccc}
1 & 2 & 4 \\
0 & 0 & -3
\end{array}\right]} & \operatorname{Rank}\{A \mid \mathrm{B}\}=2
\end{array}
$$

Then this system of equations is not solvable

Uniqueness of solutions

- The system has a unique solution IFF
$\operatorname{Rank}\{\mathrm{A}\}=\operatorname{Rank}\{\mathrm{A} \mid \mathrm{b}\}=\mathrm{n}$
n is the order of the system
- Such systems are called full-rank systems

Full-rank systems

- If Rank $\{\mathrm{A}\}=\mathrm{n}$
$\operatorname{Det}\{A\} \neq 0 \Rightarrow A$ is nonsingular so invertible Unique solution

$$
\left[\begin{array}{cc}
1 & 2 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
4 \\
2
\end{array}\right]
$$

Rank deficient matrices

- If Rank $\{A\}=m<n$
$\operatorname{Det}\{A\}=0 \Rightarrow A$ is singular so not invertible infinite number of solutions (n-m free variables) under-determined system

$$
\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
4 \\
8
\end{array}\right]
$$

$\operatorname{Rank}\{A\}=\operatorname{Rank}\{A \mid b\}=1$
Consistent so solvable

Ill-conditioned system of equations

- A small deviation in the entries of A matrix, causes a large deviation in the solution.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1 & 2 \\
0.48 & 0.99
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
3 \\
1.47
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{cc}
1 & 2 \\
0.49 & 0.99
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
3 \\
1.47
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
0
\end{array}\right]}
\end{aligned}
$$

Ill-conditioned continued.....

- A linear system of equations is said to be "ill-conditioned" if the coefficient matrix tends to be singular

Types of linear system of equations

- Coefficient matrix A is square and real
- The RHS vector b is nonzero and real
- Consistent system, solvable
- Full-rank system, unique solution
- Well-conditioned system

Solution Techniques

- Direct solution methods
- Finds a solution in a finite number of operations by transforming the system into an equivalent system that is 'easier' to solve.
- Diagonal, upper or lower triangular systems are easier to solve
- Number of operations is a function of system size n.
- Iterative solution methods
- Computes succesive approximations of the solution vector for a given A and b, starting from an initial point x_{0}.
- Total number of operations is uncertain, may not converge.

Direct solution Methods

- Gaussian Elimination
- By using ERO, matrix A is transformed into an upper triangular matrix (all elements below diagonal 0)
- Back substitution is used to solve the uppertriangular system

First step of elimination

Pivotal element
$\left[\begin{array}{ccccc}a_{11}^{(1)} \\ \hline a_{21}^{(1)} \\ a_{31}^{(1)} \\ \vdots \\ a_{n 1}^{(1)}\end{array}\right]$

$m_{2,1}=a_{21}^{(1)} / a_{11}^{(1)}$
$m_{3,1}=a_{31}^{(1)} / a_{11}^{(1)}$
\vdots
$m_{n, 1}=a_{n 1}^{(1)} / a_{11}^{(1)}$

0 \& a_{22}^{(2)} \& a_{23}^{(2)} \& \cdots \& a_{2 n}^{(2)}

0 \& a_{32}^{(2)} \& a_{33}^{(2)} \& \cdots \& a_{3 n}^{(2)}

\vdots \& \vdots \& \vdots \& \cdots \& \vdots

x_{2}

x_{3}

\vdots

x_{1}

x_{n}^{(2)} \& a_{n 2}^{(2)} \& \cdots \& \cdots \& a_{n n}^{(2)}\end{array}\right]=\left[$$
\begin{array}{c}b_{1}^{(1)} \\
b_{2}^{(2)} \\
b_{3}^{(2)} \\
\vdots \\
b_{n}^{(2)}\end{array}
$$\right]\)

Second step of elimination

Pivotal element $\left[\begin{array}{ccccc}a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} & \cdots & a_{1 n}^{(1)} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} & \cdots & a_{2 n}^{(2)} \\ 0 & a_{32}^{(2)} & a_{33}^{(2)} & \cdots & a_{3 n}^{(2)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & a_{n 2}^{(2)} & a_{n 3}^{(2)} & \cdots & a_{n n}^{(2)}\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ \vdots \\ x_{n}\end{array}\right]=\left[\begin{array}{c}b_{1}^{(1)} \\ b_{2}^{(2)} \\ b_{3}^{(2)} \\ \vdots \\ b_{n}^{(2)}\end{array}\right]$
$m_{3,2}=a_{32}^{(2)} / a_{22}^{(2)}\left[\begin{array}{ccccc}a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} & \cdots & a_{1 n}^{(1)} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} & \cdots & a_{2 n}^{(2)} \\ 0 & 0 & a_{33}^{(3)} & \cdots & a_{3 n}^{(3)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & a_{n 3}^{(3)} & \cdots & a_{n n}^{(3)}\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ \vdots \\ m_{n, 2}\end{array}\right]=a_{n 2}^{(2)} / a_{22}^{(2)}\left[\begin{array}{c}b_{1}^{(1)} \\ b_{2}^{(2)} \\ b_{3}^{(3)} \\ \vdots \\ b_{n}^{(3)}\end{array}\right]$
Engineering Mathematics III

Gaussion elimination algorithm

$$
\begin{aligned}
& m_{r, p}=a_{r p}^{(p)} / a_{p p}^{(p)} \\
& a_{r p}^{(p)}=0 \\
& b_{r}^{(p+1)}=b_{r}^{(p)}-m_{r, p} \times b_{p}^{(p)}
\end{aligned}
$$

For $\mathrm{c}=\mathrm{p}+1$ to n

$$
a_{r c}^{(p+1)}=a_{r c}^{(p)}-m_{r, p} \times a_{p c}^{(p)}
$$

Back substitution algorithm

$\left[\begin{array}{ccccc}a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} & \cdots & a_{1 n}^{(1)} \\ \mathrm{O} & a_{22}^{(2)} & a_{23}^{(2)} & \cdots & a_{2 n}^{(2)} \\ \mathrm{O} & \mathrm{O} & a_{33}^{(3)} & \cdots & a_{3 n}^{(3)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathrm{O} & \mathrm{O} & \mathrm{O} & a_{n-1 n-1}^{(n)} & a_{n-1 n}^{(n)} \\ \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} & a_{n n}^{(n)}\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ \vdots \\ x_{n-1} \\ x_{n}\end{array}\right]=\left[\begin{array}{c}b_{1}^{(1)} \\ b_{2}^{(2)} \\ b_{3}^{(3)} \\ \vdots \\ b_{n-1}^{(n-1)} \\ b_{n}^{(n)}\end{array}\right]$

$$
\begin{aligned}
& x_{n}=\frac{b_{n}^{(n)}}{a_{n n}^{(n)}} \quad x_{n-1}=\frac{1}{a_{n-1 n-1}^{(n-1)}}\left[b_{n-1}^{(n-1)}-a_{n-1 n}^{n-1} x_{n}\right] \\
& x_{i}=\frac{1}{a_{i i}^{(i)}}\left[b_{i}^{(i)}-\sum_{k=i+1}^{n} a_{i k}^{(i)} x_{k}\right] \quad i=n-1, n-2, \ldots, 1
\end{aligned}
$$

Operation count

- Number of arithmetic operations required by the algorithm to complete its task.
- Generally only multiplications and divisions are counted
- Elimination process
- Back substitution
- Total $\frac{n^{3}}{3}+n^{2}-\frac{n}{3}$

