Solution of ordinary differential equations (first order, second order and simultaneous) by Euler's, Picard's and fourth-order Runge-Kutta methods

PRELIMINARIES

Consider

 $\frac{dy}{dx}$ = f (x, y) with an initial condition y = y₀ at x = x₀.

The function f (x, y) may be linear, nonlinear or table of values

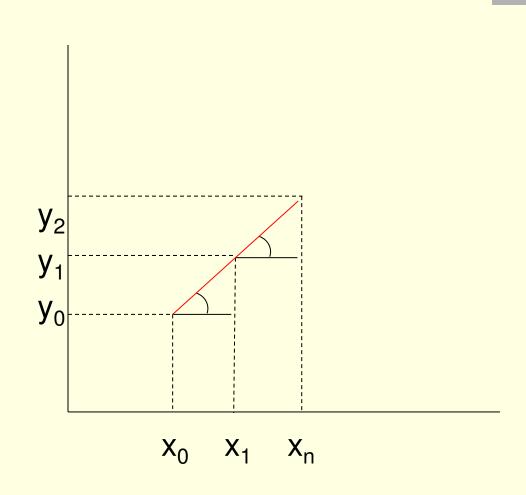
When the value of y is given at $x = x_0$ and the solution is required for $x_0 \le x \le x_f$ then the problem is called an *initial value problem*. If y is given at $x = x_f$ and the solution is required for $x_f \ge x \ge x_0$ then the problem is called a *boundary value problem*.

INITIAL VALUE PROBLEMS

A **Solution** is a curve g (x, y) in the xy plane whose slope at each point (x, y) in the specified region is given by $\frac{dy}{dx} = f(x, y)$.

The initial point (x_0, y_0) of the solution curve g(x, y) and the slope of the curve at this point is given. We then *extrapolate* the values of y for the required set of values in the range (x_0, x_f) .

EULER'S METHOD



EULER'S METHOD

- This method uses the simplest extrapolation technique.
- The slope at (x_0, y_0) is $f(x_0, y_0)$.
- Taking a small step in the direction given by the above slope, we get

$$y_1 = y (x_0 + h) = y_0 + hf (x_0, y_0)$$

- Similarly y_2 can be obtained from y_1 by taking an equal step h in the direction given by the slope $f(x_1, y_1)$.
- In general $y_{i+1} = y_i + h f(x_i, y_i)$

Modifications

- Modified Euler Method
 - In this method the average of the slopes at (x_0, y_0) and $(x_1, y_{-1}^{(1)})$ is taken instead of the slope at (x_0, y_0) where $y_1^{(1)} = y_1 + h$ f (x_0, y_0) .
 - In general,

$$y_{i+1} = y_i + \frac{1}{2} h [f(x_i, y_i) + f(x_i + h, y_i + hf(x_i, y_i))]$$

- Improved Modified Euler Method
 - In this method points are averaged instead of slopes.

$$y_{i+1} = y_i + hf(x_i + \frac{h}{2}, y_i + \frac{h}{2}f(x_i, y_i))$$

Example

- Find y (0.25) and y (0.5) given that $= 3x_2 + y$, y(0) = 4 by
 - (i) Euler Method
 - (ii) Modified Euler Method
 - (iii) Improved Euler Method and compare the results.

Solution

Applying Formulae

X	y - value			
	Euler	Modified	Improved	Exact
0.25	5.0000	5.1484	5.1367	5.1528
0.50	6.2969	6.7194	6.6913	6.7372

TAYLOR SERIES METHOD

Consider

$$\frac{dy}{dx}$$
 = f (x, y) with an initial condition y = y₀ at x = x₀.

The solution curve y(x) can be expressed in a Taylor series around $x = x_0$ as:

$$y(x_0 + h) = y_0 + h$$

$$\frac{dy}{dx} + \frac{h^2}{2!} \frac{d^2y}{dx^2} + \frac{h^3}{3!} \frac{d^3y}{dx^3} + \dots$$

where $x = x_0 + h$.

Example

□ Using Taylor series find y(0.1), y(0.2) and y(0.3) given that

$$\frac{dy}{dx} = x^2 - y; y(0) = 1$$

Solution

Applying formula

$$y(0.1) = 0.9052$$

 $y(0.2) = 0.8213$
 $y(0.3) = 0.7492$

PICARD'S METHOD OF SUCCESSIVE APPROXIMATIONS

This is an iterative method.

Consider

$$\frac{dy}{dx}$$
 = f (x, y) with an initial condition y = y₀ at x = x₀.

Integrating in $(x_0, x_0 + h)$

$$y(x_0 + h) = y(x_0) + \int_{x_0}^{x_0 + h} f(x, y) dx$$

This integral equation is solved by successive approximations.

After *n* steps

This process is repeated and in the nth approximation, we get

$$y^{(n)} = y_0 + \int_{x_0}^{x_0+h} f(x, y^{(n-1)}) dx$$

Example

Find y(1.1) given that
$$\frac{dy}{dx} = x - y$$
,

$$y(1) = 1$$
, by Picard's Method.

Solution

$$y^{(1)}_{1.1} = 1 + \int_{1}^{1.1} (x-1)dx$$
$$= 1.005$$

Successive iterations yield 1.0045, **1.0046**, **1.0046**

Thus
$$y(1.1) = 1.0046$$

Exact value is y(1.1) = 1.0048

RUNGE-KUTTA METHODS

- Euler Method is not very powerful in practical problems, as it requires very small step size *h* for reasonable accuracy.
- In Taylor's method, determination of higher order derivatives are involved.
- The Runge-Kutta methods give greater accuracy without the need to calculate higher derivatives.

nth order R.K. Method

This method employs the recurrence formula of the form

$$y_{i+1} = y_i + a_1 k_1 + a_2 k_2 + \Lambda + a_n k_n$$
 where
$$k_1 = h f (x_i, y_i)$$

$$k_2 = h f (x_i + p_1 h, y_i + q_{11} k_1)$$

$$k_3 = h f (x_i + p_2 h, y_i + q_{21} k_1 + q_{22} k_2)$$

 $k_n = h f(x_i + p_{n-1} h, y_i + q_{n-1}, k_1 + q_{n-2, 2} k_2 + \Lambda q_{(n-1), (n-1)} k_n)$

4th order R.K. Method

Most commonly used method

$$y_{n+1} = y_n + (k_1 + 2k_2 + 2k_3 + k_4)$$

where

$$k_{1} = hf(x_{n}, y_{n})$$

$$k_{2} = hf(x_{n} + \frac{h}{2}, y_{n} + \frac{k_{1}}{2})$$

$$k_{3} = hf(x_{n} + \frac{h}{2}, y_{n} + \frac{k_{2}}{2})$$

$$k_{4} = hf(x_{n} + h, y_{3} + k_{3})$$

Example

■ Using R.K. Method of 4th order find y(0.1) and y(0.2).

Given that
$$\frac{dy}{dx} = 3x + \frac{1}{2}y$$
, $y(0) = 1$ taking $h = 0.1$. Solution

$$k_{1} = h f (x_{0}, y_{0}) = 0.0500$$

$$k_{2} = h f (x_{0} + \frac{h}{2}, y_{0} + \frac{k_{1}}{2}) = 0.0663$$

$$k_{3} = h f (x_{0} + \frac{h}{2}, y_{0} + \frac{k_{2}}{2}) = 0.0667$$

$$k_{4} = h f (x_{0} + h, y_{0} + k_{3}) = 0.0833$$

$$y_{1} = y (0.1) = y_{0} + \frac{1}{6} (k_{1} + 2k_{2} + 2k_{3} + k_{4}) = 1.0674$$
By similar procedure $y(0.2) = 1.1682$