Surveying :

UNIT- IV:

1. Briefly explain 'reverse curves' and 'shift of a transition curve'
2. State the relationship between the radius of a curve and the degree of the curve.
3. What are transition curves?
4. Calculate the salient elements of the simple circular curve. Considering the chainage of point P to be 1000 m .
5. Two tangents intersect at chainage 2380 m , the deflection angle being $50^{\circ} 30^{\prime}$. Compute the necessary data for setting out a 5.7° curve to connect the two tangents if it is intended to set out the curve by Rankine's Method of tangential angles. Take the length of the normal chord as 30 m . Also, tabulate the values of the deflection angles for setting out with a theodolite having least count of 20 ".
6. Two straights $A B$ and $B C$ meet at an inaccessible point B. They are to be connected by a simple circular curve of 500 m radius. Two points P and Q are selected on $A B$ and $B C$ respectively, and the following data are obtained: $\mathrm{RAPQ}=157^{\circ} 22^{\prime} ; \mathrm{RCQP}=164^{\circ} 38^{\prime} ; \mathrm{PQ}=200 \mathrm{~m}$.
7. Calculate the necessary data for setting out the curve by the method of deflection angle. The nominal length of chord is 30 m . assume any data missing.
8. A transition curve of length 230 m joins a straight to a circular curve of radius 800 m . What is the angle turned by the transition curve and what is the necessary shift?. Find the length of offset to the transition at a distance 150 m from the short along the tangent.
9. Two straights $A B$ and $B C$ intersect at chainage 1000 m , the deflection angle being 40°. It is proposed to insert a right-handed circular curve 400 m radius with a cubic parabola of 90 m length at each end. The circular curve is to be set out with pegs at 20 m intervals and the transition curves at 10 m intervals. Find the
10. Chainage at the begining and end of the combined curve.
