Design of Steel Tension Members

What is the maximum P?

LRFD Equation

Design of Steel Tension Members

Equations for strength of tension members:

a) For yielding in the gross section:

$$\phi t P_n = \phi t F_y A_g$$

b) For fracture in the net section:

$$\phi t P_n = \phi t F_u A_e$$

Design of Steel Tension Members

• Yielding in the gross section:

Variable Definitions

- Resistance factor, ϕ_t :
 - = 0.90 for yielding (p. 2-12 LRFD)
 - = 0.75 for fracture

- $F_v = \text{Yield Strength}$ (p. 2-24 LRFD)
- F_u = Tensile or Ultimate strength (p. 2-24 LRFD)

Areas defined in Chapter B, Design Requirements

Design Requirements

- A_g Gross cross-sectional area
- A_e Effective net area
- If tension load is transmitted directly to each of the cross-sectional elements by fasteners or welds:
- $A_e = A_n$
- A_n = Net cross-sectional area (gross-section minus bolt holes)

Design Requirements

If tension load transmitted through some but not all of the cross-sectional elements:

by fasteners,

$$A_e = A_n U$$

by welds,

$$A_e = A_g U$$
 or $A_e = A U$

Example of tension transmitted by some but not all of cross-section

L –shape with bolts in one leg only

Reduction coefficient,
$$U = 1 - \left(\frac{x}{l}\right) \le 0.9$$

Where $\overline{\chi}$ is the connection eccentricity (p. 16.1-177)

Tension Analysis Example

Determine the factored strength of a 12" x 1.5", A36 steel plate connected with one row of $4 - \frac{3}{4}$ " diameter bolts positioned transversely in a single line.

Design Example (top p. 9 notes)

Design a 1000 mm long splice plate to carry a tensile live load of 130 kN and dead load due to a mass of 4500 kg. The bolts will be $\frac{3}{4}$ " in diameter and there will be at least three of them in a row parallel to the direction of force at each end. Space constraints require you to keep the width of the plate \leq 100 mm. Use A36 steel in conformance with the rest of the building.

Design Example (bottom p. 9 notes)

Design a tension member for a live load of 67.4 kips and a dead load of 22.0 kips. It is part of a web system of a truss and will be 14.8 ft long between connections. The end connections will require two rows of $\frac{3}{4}$ " diameter bolts, with three bolts per row. As a truss web member, an angle section seems most appropriate. Use A36 steel to conform to the rest of the truss.

LRFD p. 10-10

E indicates that eccentricity must be considered in this leg. Gages g₁ g₂ g₃ are workable gages as shown below

Leg	8	7	6	5	4	31⁄2	3	21/2	2	13⁄4	11/2	1 ³ ⁄8	11⁄4	1
g_1 g_2 g_3	4½ 3 3	4 2½ 3	3½ 2¼ 2½	3 2 1¾	21/2	2	13⁄4	1¾e	1 1/8	1	7 _{/8}	7 <u>/8</u>	3/2	5⁄8

Fig. 10-6. Eccentricity in double-angle connections.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

Design Example (p. 10 notes)

Same as previous example but with double angles back to back. Assume that they will be bolted to 3/8 in. thick gusset plates, straddling them at each end.

Net Section for Staggered Bolt Holes

Recall definition of Net Area, LRFD p. 16.1-10

$$A_n = A_g - \sum Dt + \sum \frac{s^2}{4g}t$$

Staggered Bolt Hole Example (p. 12 notes)

Consider the 7 x 4 x $\frac{1}{2}$ angle shown. The holes are 7/8" diameter, on normal gage lines. The holes are the U.S. standard 3" c.c. in each row, but the holes in the interior row in the 7" leg are offset by 1 $\frac{1}{2}$ " from the other holes, which line up with each other. Find A_n for both a two hole and a three hold tear line.

LRFD p. 10-10

E indicates that eccentricity must be considered in this leg. Gages g₁ g₂ g₃ are workable gages as shown below

Leg	8	7	6	5	4	31⁄2	3	21/2	2	13⁄4	11/2	1 ³ ⁄8	11⁄4	1
g_1 g_2 g_3	4½ 3 3	4 2½ 3	3½ 2¼ 2½	3 2 1¾	21/2	2	13⁄4	1¾e	1 1/8	1	7 _{/8}	7 <u>/8</u>	3/2	5⁄8

Fig. 10-6. Eccentricity in double-angle connections.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION