Design of Steel Flexural Members

Design for :

 Economy – choose lightest beam that can carry the load

 Serviceability – May need deeper beam to prevent serviceability problems such as deflection or vibrations

Design of Steel Flexural Members

Bending about strong axis (x-axis):

 Bending about weak axis

Y

Stress and Strain in the Cross-section

Strain

LRFD Equation

 $\sum \gamma_i Q_i \leq \phi R_n$

Load Effect ≤ Factored Resistance

 $M_u \leq \phi M_n$

Specification for Flexural Members

Fig. C-F1.1. Nominal moment as a function of unbraced length and moment gradient.

Part 5 – Design of Flexural Members

- Beam Tables Table 5-3, p. 5-42 5-48
- Beam Charts Table 5-5, p. 5-71 5-102
- Beam Diagrams Table 5-17, p. 5-162 5-177

Flexural Design Example p. 27 notes

You are to select the lightest A992 steel beam that can carry a live load of 1.9 k/ft and a dead load of 1.4 k/ft for a span of 33 feet. Assume first continuous lateral support, and then lateral support 10 ft from each end only.

Flexural Design Example p. 27 notes

Select an A36 channel to carry a 500 lb/ft live load and a 300 lb/ft dead load for a simply supported span of 15 ft. Lateral support will be continuous for both flanges.

Deflections

- Serviceability (not strength) Chapter L
- Calculated for service live load only
- KBC:

$$-\Delta_{max} = L/360$$
 floor members
 $-\Delta_{max} = L/240$ roof members

where Δ_{max} = maximum deflection L = span length

Deflections

p.5-11 LRFD

 $\Delta = \frac{ML^2}{C_1 I_x}$

Can also be written

 $\frac{\Delta}{L} = \frac{ML}{12C_1 I_x}$

Check deflection of beams chosen in previous examples

Beam Shear

Maximum moment:

W

Μ

Also an internal shear: $V_{\rm max} = \frac{wL}{2}$

Beam Shear

Beam Shear

Stiffeners

Shear Strength of Beams

p. 16.1-35 LRFD (with no holes in web)

$$\phi_{v}V_{n} = 0.9(0.6)F_{yw}A_{w} \quad \text{if,} \quad \frac{h}{t_{w}} \le 2.45\sqrt{\frac{E}{F_{yw}}}$$
true for steel shapes

where,

$$F_{yw}$$
 = yield strength web = F_y for steel shapes
 A_w = area of web = d x t_w

p. 16.1 – 67 At connection where holes are in web: $\phi V_n = \phi R_n = 0.75(0.6)F_u A_{nv}$

Check Shear Strength of beams previously designed

Floor Systems for Steel Frame Structures

Typical floor systems consist of steel decking filled with concrete

Figures of steel decking p. 16.1-223 (Commentary to chapter I)

Example **Data Sheet** for Steel Decking

EC366	
Siab Depth 3"	
Nate: Vol. o	5 concr. in 3" form ht. ≈ .125 ft ³ /ft*

Suggested Temperature and Shrinkage

Reinforcement - 6 x 6 Welded Wire Fabric

Wire Size Slab Depth Spans to 10' in. 5½ - 6¼ 10/10 61/2 - 71/2 8/8

1	Section Properties					
	Design Thickness in.	Weight psf	l in.4) sp. ³ .	(Sn	
	.0295 .0358 .0474 .0600	1.8 2.2 2.9 3.6	.799 .984 1.307 1.633	.450 .571 .806 1.004	.497 .599 .802 1.004	

Total Allowable Superimposed Loads (psf) Working Stress Design. fy = 40 ksi. fc = 3 ksi. Table 1 Table 2

Regular Weight Concrete: N = 9 (145 pcf)

Lightweight Concrete: N = 14 (110 pcf)

10' & up

8/8

6/6

- 3/-

Saaa	Slab	Design Thickness (in.)			n.)
ftin.*	in.*	.0295	.0358	.0474	.0600
9-0	5½ 6	200 226	254 287	290 328	290 328
9-6	5½ 6	189 214	241 272	268 302	268 302
10-0	5½ 6	180 203	227 256	250 282	250 282
10-6	5½ 6 6½	194 216	207 234 261	231 261 292	231 261 292
11-0	5½ 6 6½ 7	162 182 203 224	193 218 244	210 238 265 293	210 238 265 293
12-0	51/2 6 61/2 7 71/2			183 207 231 256 280	183 207 231 256 280
13-0	51/2 6 61/2 7 71/2			161 182 203	161 182 203 221 242
14-0	5½ 6 6½ 7 7½				143 159 177 196
15-0	6 6½ 7 7½	R RIA	01-18 S		145 550 190 190
16-0	6 6½ 7 7½	58 165 773 80	80 90 100 110	-HICH	

Span	Slab	Design Thickness (in.)			ı.)
ftin.*	in.*	.0295	.0358	.0474	.0600
9-0	5½	185	235	268	268
	6	209	266	303	303
9-6	5½	176	223	247	247
	6	198	252	279	279
10-0	5½	167	210	230	230
	6	188	237	261	261
10-6	5½	159	191	214	214
	6	179	216	242	242
	6½	200-2	242	270	270
11-0	5½	4150	179	194	194
	6	4169	202	220	220
	6½	4189	226	245	245
	7	41208-2	249	271	271
12-0	5½ 6 6½ 7 7½	133 1515 5168 1865 -203	157 177 198 219	169 192 214 236 259	169 192 214 236 259
13-0	5½ 6 6½ 7 7½	11124 11274 11274 11274 11274 11274 11575 11575	138 5074 (State	148 168 187 207 227	148 168 187 207 227
14-0	5½ 6 6½ 7 7½	91- 103- 115- 128- 141	ELEN SEAL	131 149 166 18	131 149 166 181 198
15-0	6 6½ 7 7½	84 94 105 115			134 149 164 181
16-0	6	68	89	1213	119
	6½	76	100	136	133
	7	86	112	150	150
	7½	94	122	164	1647

The following applies to both Regular Weight and Lightweight Concrete Load Tables.

No shoring 1 line of shoring Concrete Volume in Cubic Yards per 100 Square Feet

Fully Sh	ored	Concrete Cover above Deck Ribs (in.)			
Condi	tion _[2	3	4	5
EC366		1.08	1.39	1.69	2.00
wt/ st2, 1	deck	પદ	58	07	82

Notes:

1. All loads are assumed to be statically applied. For dynamically applied loads, consult Epic.

2. Superimposed loads for unshored spans (loads in white areas) are based on the use of floor units on 3 or more spans. For single spans use approx, 90% of tab. load.

÷ -,

3. Composite slab design is based on simple span analysis.

4. Deflection limit of the composite slab is 2/360 under the superimposed load.

5. Load tables are in accordance with SDI Recommendations.

Construction Details

Construction Details

Design Example with Floor System p. 33 notes

Design the floor system for an office building using the KBC minimum distributed live load for corridors (to allow flexibility of office space). The depth of the floor beams is limited to 24.5" to allow space for mechanical systems. Use EC366 steel decking and lightweight concrete without shoring.

KBC Minimum Distributed Live Loads

Table 1105 MINIMUM UNIFORMLY DISTRIBUTED LIVE LOADS

Occupancy or use

Live load (psf)^a

Office buildings:	
Offices	50
Labbies	100
Corridors, above first floor	80
File and computer rooms require heavier	
loads based upon anticipated occupancy	

KBC Minimum Concentrated Load

Table 1107 Minimum Concentrated Loads	ON 21/2 × 21/2'
Location	Poundsª
Elevator machine room grating (on area of 4 sq. in.) Finish light floor plate construction (on area of 1 sq. in.) Garages Varies by use Greenhouse roof bars, purlins and rafters Hospitals and ward rooms Libraries Manufacturing and storage buildings Mercantile areas Office Schools	300 200 See Section 1107.1.1 100 1,000 2,000 2,000 2,000 1,000
Scuttles, skylight ribs and accessible ceilings Sidewalks or vehicular driveways subject to trucking Stair treads (on area of 4 sq. in. at center of tread)	200 8,000 300

Composite Construction

Detail of shear connectors

Composite Construction

PNA in steel

C=T

PNA in concrete

Composite Construction $C_{con} = 0.85f'_{c}ba$ $T = F_yA_s$

C and T can not exceed force carried by studs, $\sum Q_n$

 $\sum Q_n = 0.85 f'_c ba$

$$a = \frac{\Sigma Q_n}{0.85 f'_c b}$$

Depth of compression block

Composite Construction p.5-33

- Y1 Distance from PNA to beam top flange
- Y2 Distance from concrete flange force to beam top flange
- b effective width of concrete slab flange
- a effective concrete flange thickness