The bvirnlnoic cycle

The story of a drop in the proverbial "bucket"

Earth's water

Ocean Storage

3.5\%

What percent of Earth's water is stored in the

Wat er So urce	Wat er Vol ume (cu.m i.)	Warer Vol ume (cu.k m)	Total Wat er
Oceans	321,000,000	1,338,000,000	96.5\%
Total globa 1 wat er	332,500,000	1,386,000,000	

Gleick, P. H., 199 6: Water reso urce s. In En cyclopedia of Climate University Press, New York, vol. 2, pp. 817-82 3.

Does the volume of the world's oceans ever change?

Last glacial period: Sea level 400 ft lower than today

What two processes change liquid water into vapor that can ascend into the atmosphere?

-Evaporation
90\%

> -Transpiration

Evaporation

-The process by which liquid water is transformed into a gaseous state
-Evaporation into a gas ceases when the gas reaches saturation
-The molecules that esca
above-average energies.
-Those left behind have below-average energies

- Manifested by a decrease in the temperaterre of the condensed phase.

Evaporation

Energy breaks bonds that hold molecules together
Net evaporation occurs when the rate of evaporation exceeds the rate of condensation
Removes heat from the environment:

Primary mechanism for surface-tosathosphere

Evaporation

GPV-IsoMAT EVAP Z=1 6hr-Ave. 2007/01/08 06:00

Evaporation v. Precipitation

About equal on a global scale
Evaporation more prevalent over the oceans than precipitation
Over land, precipitation exceeds evaporation Most water evaporated from the oceans falls back into the ocean as precipitation
10% of water evaporated from the ocean is transported over land and falls as precipitation Once evaporated, a water molecule spends ~ 10 days airborne

Transpiration

The process of water loss from plants through stomata.

(Stomata are small openings found on the underside of leaves that are connected to vascular plant tissues.)

Transpiration

Accounts for $\boldsymbol{\sim} 10 \%$ of the moisture in the atmosphere

Depends on:

Temperature
Humidity

- Insolation
- Precipitation
- Soil type and saturation
- Wind
. Land slope

What percent of the Earth's total volume of water is stored in the atmosphere?

0.001\%

Water vapor Clouds
(water vapor condensed on particulate)

Global distribution of

 atmospheric water| Water
 Source | Volume (cu
 $\mathrm{mi})$ | Volume(cu km) | $\%$ total
 freshwater | $\%$ total
 water |
| :--- | :--- | :--- | :--- | :--- |
| Atm | 3,094 | 12,900 | 0.04% | 0.001% |
| Total
 Global
 Fresh
 Water | $8,404,000$ | $35,030,000$ | 100% | 2.5% |
| Total
 Global
 Water | $332,500,000$ | $1,386,000,000$ | - | 100% |

Precipitation

- The vapor that accumulates or freezes on condensation nuclei is acted on by gravity and falls to Earth's surface.

freezing rain, sleet, snow, or hail

\square
The total atmospheric water vapor contained in a vertical column of unit cross-sectional area from the Earth's surface to the "top of the atmosphere"

How many gallons of water fall when 1 inch of rain falls on 1 acre of land?

$$
\begin{aligned}
& \text { About } 27,154 \text { gallons } \\
& (102,800 \text { liters }) \text { of water }
\end{aligned}
$$

On average, the 48 continental United States receives enough precipitation in one year to cover the land to a depth of 30 inches.

Meteorological factors affecting surface (over soil)

- Type of precipitation
- Rainfall intensity
- Rainfall amount
- Rainfall duration
- Distribution of rainfall over the drainage basin
- Direction of storm movement
- Precipitation that occurred earlier and resulting soil moisture
- Meteorological conditions that affect evapotranspiration

Physical characteristics affecting surface runoff

- Land use
- Vegetation
- Soil type
- Drainage area
- Basin shape
- Elevation
- Topography, especially the slope of the land
- Drainage network patterns
- Ponds, lakes, reservoirs, sinks, etc. in the basin, which prevent or delay runoff from continuing downstream

Overland runoff from disturbed areas often contains excessive sediment in addition to water. (USGS)

Human factors affecting surface runoff

- Urbanization -- more impervious surfaces reduce infiltration and accelerate water motion

Removal of vegetation and soil -- surface grading, artificial drainage networks increases volume of runoff and shortens runoff time to streams from rainfall and snowmelt

Most runoff...

Drains to a creek

- To a stream
- To a river

To an ocean
Rarely runoff drains to a closed lake May be diverted for human uses

Makes up a MINISCULE amount of Earth's water

Water source	Water Volume (cu mi)	$\%$ of total freshwater	$\%$ of total water
Streamflow	509	0.006%	0.0002%
Total Global Freshwater	$8,404,000$	2.5%	--
Total Global Water	$332,500,000$	-	-

Lakes \& Swamps

- Freshwater makes up $\sim 3 \%$ of all water on Earth and lakes and swamps account for a mere 0.29\% of that!

20\% of all freshwater is in Lake Baikal in Siberia (638 km long, 80 km wide, $1,620 \mathrm{~m}$ deep)
Another 20\% is in the Great Lakes

Groundwater begins as INFILTRATION

Precipitation falls and infiltrates into the subsurface soil and rock

-Can remain in shallow soil layer -Might seep into a stream bank

- May infiltrate deeper, recharging an aquifer
- May travel long distances
-May stay in storage as ground water

Factors affecting infiltration
Precipitation (greatest factor)

- Magnitude, intensity, duration
- Characteristics (rain, snow)

- Soil Characteristics

Clay absorbs less water at a slower rate than sand Soil Saturation

Higher saturation leads to more runoff instead
Land Cover
Slope of the Land
Hills enhance runoff velocity
Evapotranspiration
Plants use soil moisture to grow and transpire

Infiltration replenished

Slow process -- ground water moves slowly through the unsaturated zone
Recharge Rate determined by precipitation \& depth
An aquifer in New Mexico, if emptied, would take centuries to refill whereas a shallow aquifer in south Georgia may be replenished almost immediately

As precipitation infiltrates subsurface soil, it forms zones: Unsaturated -- interstitial spaces cannot be pumped Saturated -- Water completely fills the voids between rocks and soil particles

Natural \& Artificial Recharge

Rapid-infiltration pits

Spread water over the land in pits, furrows, ditches or build small dams in creeks and streams to deflect runoff

Ground water injection

Construct recharge wells and inject water directly into aquifers

How much ground water?

- Ground water occurs only close to the surface (a few miles down)

Density of soil/rock increases with depth
The weight of the rocks above
condense the rocks below and squeeze out the open pore spaces deeper in the Farth

Frozen freshwater stored in glaciers, ice fields, and snowfields

Earth's Water
Total Freshwater

1.7\%
68.7%
Icecaps and glaciers

Glacial ice covers 11\% of all land

- Represents a large \% of all freshwater
Mountain snowfields are "reservoirs" for many watersupply systems
75% in Western States
"Rain-on-snow" events contribute to high runoff velocities
"New" Operational Snowmelt Forecasts

Distribution of Earth's Water

Fresh-

This Water Cycle

Water storage in ice and snow

Water storage in the atmosphere \leqslant Condensation Sublimation

Evapotranspiration
Precipitation

Streamflow
ntiltations
Spring
Evaporation

Surface runoff

Freshwater

Ground-water storage

