
Runoff Hydrograph and Flow 

Routing 

Quote for Today: "Can we afford clean water? Can we afford rivers and 

lakes and streams and oceans which continue to make possible life on 

this planet? Can we afford life itself? Those questions were never asked 

as we destroyed the waters of our nation, and they deserve no answers 

as we finally move to restore and renew them. These questions answer 

themselves."  

 



Hydrologic Analysis 

Change in storage w.r.t. time  = inflow - outflow 

In the case of  a linear reservoir, S = kQ 

Transfer function for a linear system (S = kQ). 



Proportionality and 

superposition 

• Linear system (k is constant in S = kQ)  

– Proportionality 

• If  I1  Q1 then C*I2  C*Q2  

– Superposition 

• If  I1  Q1 and I2  Q2, then  I1 +I2 Q1 + Q2  

 



Impulse response function 

Impulse input: an input applied instantaneously (spike) at time Impulse input: an input applied instantaneously (spike) at time tt  and zero and zero 

everywhere elseeverywhere else  

An unit impulse at An unit impulse at tt  produces as produces as 

unit impulse response function unit impulse response function 

u(tu(t--tt) )   

Principle of  Principle of  

proportionality and proportionality and 

superpositionsuperposition  



Convolution integral 

• For an unit impulse, the response of the system is given 
by the unit impulse response function u(t-t) 

• An impulse of 3 units produces the 3u(t-t) 

• If I(t) is the precipitation intensity occurring for a time 
period of dt, the response of the system (direct runoff) is 
I(t)u(t-t)dt  

• The complete response due to the input function I(t) is 
given by convolution integral 

 

 

• Response of a linear system is the sum (convolution) of 
the responses to inputs that have happened in the past. 
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Step and pulse inputs 

• A unit step input is an 

input that goes from 0 to 

1 at time 0 and 

continues indefinitely 

thereafter 

• A unit pulse is an input 

of unit amount occurring 

in duration Dt and 0 

elsewhere. 

Precipitation is a series of  pulse inputs!Precipitation is a series of  pulse inputs!  



Unit Hydrograph Theory 

• Direct runoff hydrograph resulting from a 

unit depth of excess rainfall occurring 

uniformly on a watershed at a constant 

rate for a specified duration. 

• Unit pulse response function of a linear 

hydrologic system 

• Can be used to derive runoff from any 

excess rainfall on the watershed. 



Unit hydrograph assumptions 

• Assumptions 

– Excess rainfall has constant intensity during 

duration 

– Excess rainfall is uniformly distributed on 

watershed 

– Base time of runoff is constant 

– Ordinates of unit hydrograph are proportional 

to total runoff (linearity) 

– Unit hydrograph represents all characteristics 

of watershed (lumped parameter) and is time 

invariant (stationarity) 



Discrete Convolution  
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Continuous  

Discrete  

Q is flow, P is precipitation and U is unit hydrograph 

M is the number of  precipitation pulses, n is the number 

of  flow rate intervals 

The unit hydrograph has N-M+1 pulses 



Application of  

convolution to the 

output from a linear 

system 



Time – Area Relationship 
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Application of UH 

• Once a UH is derived, it can be 

used/applied to find direct runoff and 

stream flow hydrograph from other storm 

events. 
Ex. 7.5.1 Given: 

P1 = 2 in, P2 = 3 in and P3 = 1 in, baseflow = 500 cfs and 

watershed area is 7.03 mi2. Given the Unit Hydrograph 

below, determine the streamflow hydrograph 



7.5.1 solution (cont’d) 

See another example at: http://www.egr.msu.edu/~northco2/BE481/UHD.htm 

http://www.egr.msu.edu/~northco2/BE481/UHD.htm


Gauged and ungauged watersheds 

• Gauged watersheds 

– Watersheds where data on precipitation, 

streamflow, and other variables are available 

• Ungauged watersheds 

– Watersheds with no data on precipitation, 

streamflow and other variables. 



Need for synthetic UH 

• UH is applicable only for gauged 

watershed and for the point on the stream 

where data are measured 

• For other locations on the stream in the 

same watershed or for nearby (ungauged) 

watersheds, synthetic procedures are 

used. 



Synthetic UH 

• Synthetic hydrographs are derived by  

– Relating hydrograph characteristics such as 

peak flow, base time etc. with watershed 

characteristics such as area and time of 

concentration. 

– Using dimensionless unit hydrograph 

– Based on watershed storage 

 



SCS dimensionless hydrograph 

• Synthetic UH in which 

the discharge is 

expressed by the ratio 

of q to qp and time by 

the ratio of t to Tp 

• If peak discharge and 

lag time are known, UH 

can be estimated.  
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Tc: time of  concentration 

C = 2.08 (483.4 in English 

system) 

A: drainage area in km2 (mi2) 

 

pb Tt 67.2



Ex. 7.7.3 
• Construct a 10-min SCS UH. A = 3.0 km2 and Tc = 1.25 h 
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Multiply y-axis of  SCS hydrograph by 

qp and x-axis by Tp to get the required 

UH, or construct a triangular UH 
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2.22 h 

7.49 m3/s.cm 



Flow Routing 

• Procedure to 
determine the flow 
hydrograph at a 
point on a 
watershed from a 
known hydrograph 
upstream 

• As the hydrograph 
travels, it 
– attenuates  

– gets delayed 
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Why route flows? 

 

• Account for changes in flow hydrograph as a flood wave 

passes downstream 

• This helps in  

– Accounting for storages 

– Studying the attenuation of flood peaks 

Q 

t 



Types of flow routing 

• Lumped/hydrologic 

– Flow is calculated as a function of time alone 

at a particular location 

– Governed by continuity equation and 

flow/storage relationship  

• Distributed/hydraulic 

– Flow is calculated as a function of space and 

time throughout the system 

– Governed by continuity and momentum 

equations 



Hydrologic Routing 

Inflow)( tI Outflow)( tQ

Upstream hydrograph Downstream hydrograph 
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Input, output, and storage are related by continuity equation: 
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)(tI Discharge 
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Q and S are unknown 

Storage can be expressed as a function of  I(t) or Q(t) or both 
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For a linear reservoir, S=kQ 



Lumped flow routing 

• Three types 

1. Level pool method (Modified Puls) 

– Storage is nonlinear function of Q 

2. Muskingum method 

– Storage is linear function of I and Q 

3. Series of reservoir models 

– Storage is linear function of Q and its time 

derivatives 



S and Q relationships 



Level pool routing 

• Procedure for calculating outflow 

hydrograph Q(t) from a reservoir with 

horizontal water surface, given its inflow 

hydrograph I(t) and storage-outflow 

relationship 



Hydrologic river routing 

(Muskingum Method) 
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K = travel time of  peak through the reach 

X = weight on inflow versus outflow (0 ≤ X ≤ 0.5) 

X = 0  Reservoir, storage depends on outflow, no 

wedge 

X = 0.0 - 0.3  Natural stream 
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Muskingum Method (Cont.) 
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Recall: 

Combine: 

If  I(t), K and X are known, Q(t) can be calculated using above equations 



Muskingum - Example 

• Given: 

– Inflow hydrograph 

– K = 2.3 hr, X = 0.15, Dt = 1 

hour, Initial Q = 85 cfs 

• Find: 

– Outflow hydrograph using 

Muskingum routing method 

Period Inflow 

(hr) (cfs) 

1 93 

2 137 

3 208 

4 320 

5 442 

6 546 

7 630 

8 678 

9 691 

10 675 

11 634 

12 571 

13 477 

14 390 

15 329 

16 247 

17 184 

18 134 

19 108 

20 90 
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Muskingum – Example (Cont.) 

jjjj QCICICQ 32111  
Period Inflow C1Ij+1 C2Ij C3Qj Outflow 

(hr) (cfs)    (cfs) 

1 93 0 0 0 85 

2 137 9 32 50 91 

3 208 13 47 54 114 

4 320 20 72 68 159 

5 442 28 110 95 233 

6 546 34 152 138 324 

7 630 40 188 192 420 

8 678 43 217 249 509 

9 691 44 233 301 578 

10 675 43 238 343 623 

11 634 40 232 369 642 

12 571 36 218 380 635 

13 477 30 197 376 603 

14 390 25 164 357 546 

15 329 21 134 324 479 

16 247 16 113 284 413 

17 184 12 85 245 341 

18 134 8 63 202 274 

19 108 7 46 162 215 

20 90 6 37 128 170 
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CC11  = 0.0631, C= 0.0631, C22    = 0.3442, C= 0.3442, C33  = 0.5927= 0.5927  



Distributed Flow routing in 

channels 

• Distributed Routing 

• St. Venant equations 

– Continuity equation 

 

 

– Momentum Equation 
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Continuity Equation 

dx
x

Q
Q
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Q = inflow to the control volume 

q = lateral inflow  

Elevation View 

Plan View 

Rate of change of flow 

with distance 

Outflow from the C.V. 

Change in mass 

Reynolds transport theorem  
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Continuity Equation (2) 
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Momentum Equation 

• From Newton’s 2nd Law:  

• Net force = time rate of change of momentum 
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Sum of forces on 

the C.V. 

Momentum stored 

within the C.V 

Momentum flow 

across the C. S. 



Forces acting on the C.V. 

Elevation View 

Plan View 

• Fg = Gravity force due to 

weight of water in the C.V. 

• Ff = friction force due to 

shear stress along the 

bottom and sides of the 

C.V. 

• Fe = contraction/expansion 

force due to abrupt 

changes in the channel 

cross-section 

• Fw = wind shear force due 

to frictional resistance of 

wind at the water surface 

• Fp = unbalanced pressure 

forces due to hydrostatic 

forces on the left and right 

hand side of the C.V. and 

pressure force exerted by 

banks 



Momentum Equation 
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Momentum Equation(2) 

Local 

acceleration 

term 

Convective 

acceleration 

term 

Pressure 

force 

term 

Gravity 

force 

term 

Friction 

force 

term 

Kinematic Wave 

Diffusion Wave 

Dynamic Wave 



Dynamic Wave Routing 

Flow in natural channels is unsteady, non-

uniform with junctions, tributaries, variable 

cross-sections, variable resistances, variable 

depths, etc etc. 



Solving St. Venant equations 
• Analytical  

– Solved by integrating partial differential equations 

– Applicable to only a few special simple cases of kinematic waves 

• Numerical 
– Finite difference 

approximation 

– Calculations are performed 

on a grid placed over the (x,t) 

plane 

– Flow and water surface 

elevation are obtained for 

incremental time and 

distances along the channel 

x-t plane for finite differences calculations 



Obtaining river cross-sections 

Traditional methods  

Depth sounder and GPS  

Cross-sections are also extracted from a contour map, DEM, and TIN 



Triangulated Irregular Network 

Node 

Edge 

Face 



3D Structure of a TIN 



Real TIN in 3D! 



TIN for UT campus 



TIN as a source of cross-sections 



CrossSections 



Channel and Cross-Section 

Direction of Flow 

Cross-Section 

Channel 



HEC GeoRAS 

• A set of ArcGIS tools for processing of 

geospatial data for  

– Export of geometry HEC-RAS  

– Import of HEC-RAS output for display in GIS 

• Available from HEC at 
http://www.hec.usace.army.mil/software/hec-ras/hec-georas.html 

http://www.hec.usace.army.mil/software/hec-ras/hec-georas.html
http://www.hec.usace.army.mil/software/hec-ras/hec-georas.html
http://www.hec.usace.army.mil/software/hec-ras/hec-georas.html
http://www.hec.usace.army.mil/software/hec-ras/hec-georas.html
http://www.hec.usace.army.mil/software/hec-ras/hec-georas.html


Hydraulic Modeling with Geo-RAS 

GIS data  HEC-RAS Geometry 

HEC-RAS Flood Profiles 

Flood display in GIS 


