III\|\|DIN|Unit Hydrographs Ch-7 (Streamflow Estimation)

Transforming the Runoff from Rainfall

Unit Hydrograph Theory

\square Moving water off of the watershed...
\square A mathematical concept (based on linearity)
\square Linear in nature

Some History behind Unit Hydrograph Theory

\square Sherman - 1932(first to propose the concept of 'Unit Hydrograph')
\square Horton - 1933
\square Wisler \& Brater - 1949-"the hydrograph of surface runoff resulting from a relatively short, intense rain, called a unit storm."
\square The runoff hydrograph may be "made up" of runoff that is generated as flow through the soil (Black, 1990).

Unit Hydrograph Components

\square Duration
\square Lag Time
\square Time of Concentration
\square Rising Limb
\square Recession Limb (falling limb)
\square Peak Flow
\square Time to Peak (rise time)
\square Recession Curve
\square Separation

\square Base flow

Methods of Developing UH's

\square From Streamflow Data
\square Synthetically

- Snyder (for CEE4420 - just know the formula for calculating lag and concentration times that are in the Gupta book
- SCS
- Time-Area (Clark, 1945)
\square "Fitted" Distributions

Unit Hydrograph

\square The hydrograph of direct runoff that results from 1-inch (or 1 unit) of excess precipitation spread uniformly in space and time over a watershed for a given duration.
\square The key points :
\checkmark 1-inch of EXCESS precipitation
\checkmark Spread uniformly over space - evenly over the watershed
\checkmark Uniformly in time - the excess rate is constant over the time interval
\checkmark There is a given duration pertaining to the storm - NOT the duration of flow!

Derived Unit Hydrograph

Note: The baseflow shown here (and separated in next slide) was identified using a different graphical method). For the course - keep the baseflow separation simple to 'flat rate deduction' or the N=Ad0. 2 approach)

Derived Unit Hydrograph

께ा\| \||| Using a UH

- Remember what we covered in class last time on how to predict direct runoff from a storm of given duration and depth of excess precipitation provided you knew the UH for the same duration of the storm:
"The direct runoff from a 2 hour storm with 2 units of excess rainfall shall be twice as much as the direct runoff from a 2 hour storm with 1 unit of excess rainfall"

Changing the Duration of UH

\square Very often, it will be necessary to change the duration of the unit hydrograph. Storms occur in all shapes (rainfall amount) and sizes (durations)
\square The most common method of altering the duration of a unit hydrograph is by the S-curve method.
\square The S-curve method involves continually lagging a unit hydrograph by its duration and adding the ordinates.
\square For the present example, the 6-hour unit hydrograph is continually lagged by 6 hours and the ordinates are added.

S-Curve: You

Develop S-Curve

 get this by adding theordinates of
multiple 6 hr
UHs below

Convert to 1-Hour Duration

1. To arrive at a 1-hour UH from a given 6 hour UH, two S-curves are lagged by 1 hour from each other and the difference between the two lagged S-curve (ordinates) is calculated for every timestep.
2. However, because the S-curve was formulated from unit hydrographs having a 6 hour duration of uniformly distributed precipitation, the hydrograph resulting from the subtracting the two S-curves will be the result of $1 / 6$ of an inch of precipitation.
3. Thus the ordinates of the newly created 1-hour DR hydrograph in step 1 must be multiplied by 6 in order to be a true unit hydrograph to get the final 1 hr UH .
4. The 1-hour UH should have a higher peak which occurs earlier than the 6-hour unit hydrograph. Does this make sense ? You are having the same amount of excess rainfall but in a shorter period so the storm is more intense and hence creates runoff faster.

Final 1-hour UHG

Steps for Changing duration of UH

Suppose you are asked to change the duration of a given 2 hour UH to a 6 hour UH. Let $\mathrm{tr}=2 \mathrm{hr}$ (original duration) and $\mathrm{trb}=6 \mathrm{hr}$ (required duration).

1. First lag a minimum of tb/tr number of 2 hour UHs. So suppose, tb (time base of flow) is 12 hours, then in this case you should lag at least 12/2=6 2 hour UHs. Round off this number to the nearest higher integer.
2. Next, add all the ordinates as a function of time. You should get an S-type shape where the flow will reach a steady-state and saturated value. In exam, step\#1 is very handy to save time. And the moment you get your highest flow value, that can be your S-curve peak value that you can maintain from thereafter.
3. Now lag two S-curves (derived in step\#2) by duration trb (6 hour). And then subtract the ordinates.
4. Step \#3 will give you a DRH for a trb duration storm. Multiply the ordinates by tr/trb to get your 6 hour UH from the given 2 hr UH.

Synthetic UHs

\square Snyder (this is good enough for course)
\square SCS
\square Time-area

Snyder

\square Since peak flow and time of peak flow are two of the most important parameters characterizing a unit hydrograph, the Snyder method employs factors defining these parameters, which are then used in the synthesis of the unit graph (Snyder, 1938).
\square The parameters are C_{p}, the peak flow factor, and C_{t}, the lag factor.
\square The basic assumption in this method is that basins which have similar physiographic characteristics are located in the same area will have similar values of C_{t} and C_{p}.
\square Therefore, for ungaged basins, it is preferred that the basin be near or similar to gaged basins for which these coefficients can be determined.

Basic Relationships

$$
t_{L A G}=C_{t}\left(L \bullet L_{c a}\right)^{0.3}
$$

$t_{\text {all.lag }}=t_{\text {LLAG }}+0.25\left(t_{\text {alt.taraction }}-t_{\text {duration }}\right)$

$$
t_{\text {base }}=3+\frac{t_{L A G}}{8}
$$

Tוा||||||| Significance of Unit Hydrograph

\square Watersheds response to a given amount of excess precipitation is just a multiplier of the unit hydrograph
\square Use unit hydrograph as a basis to determine the storm hydrograph from any given rainfall distribution

Example

\square Given the following rainfall distribution

Time	Precipitation
1	0.5
2	3
3	1.5
4	0.2

\square The watershed will respond as follows

Example

Time (hr)	Precipitation
1	0.5
2	3
3	1.5
4	0.2

For hour 1: multiply your 1 hr UH by 0.5 and plot it starting at $\mathrm{t}=1 \mathrm{hr}$

Incremental Storm Hydrographs

For hour 2: multiply your 1 hr UH by 3 and plot it starting at $\mathrm{t}=2 \mathrm{hr} . \ldots$. And so on

Example

Now add all your ordinates to get the final DRH - shown here by the tallest DRH.

This is the DRH you will get from the storm of 4 hours with variable intensity

Incremental + Final Storm Hydrograph

