Open Channel Flow

- Liquid (water) flow with a <u>free surface</u> (interface between water and air)
- \succ relevant for
 - > natural channels: rivers, streams
 - engineered channels: canals, sewer lines or culverts (partially full), storm drains

- > of interest to hydraulic engineers
 - Iocation of free surface
 - velocity distribution
 - discharge stage (<u>depth</u>) relationships
 - > optimal channel design

Topics in Open Channel Flow

Uniform Flow _____ normal depth____

- Discharge-Depth relationships
- Channel transitions
 - Control structures (sluice gates, weirs...)
 - Rapid changes in bottom elevation or cross section
- Critical, Subcritical and Supercritical Flow
- > Hydraulic Jump
- Gradually Varied Flow
 - Classification of flows
 - Surface profiles

Classification of Flows

- Steady and Unsteady (Temporal)
 - Steady: velocity at a given point does not change with time
- ➢ Uniform, Gradually Varied, and Rapidly Varied (Spatial)
 - Uniform: velocity at a given time does not change within a given length of a channel
 - Gradually varied: gradual changes in velocity with distance
- > Laminar and Turbulent
 - Laminar: flow appears to be as a movement of thin layers on top of each other
 - > Turbulent: packets of liquid move in irregular paths

Momentum and Energy Equations

Conservation of Energy "losses" due to conversion of turbulence to heat \succ useful when energy losses are known or small Contractions > Must account for losses if applied over long distances > We need an equation for losses **Conservation of Momentum** \succ "losses" due to shear at the boundaries > useful when energy losses are unknown > Expansion

Open Channel Flow: Discharge/Depth Relationship

- Given a long channel of constant slope and cross section find the relationship between discharge and depth
- > Assume

- Steady Uniform Flow <u>no acceleration</u>
- > prismatic channel (no change in <u>geometry</u> with distance)
- Use Energy, Momentum, Empirical or Dimensional Analysis? $\tau_0 = -\frac{\gamma h_l d}{4l}$
- > What controls depth given a discharge?
- > Why doesn't the flow accelerate? Force balance

Steady-Uniform Flow: Force Balance

Relationship between shear and velocity? <u>Turbulence</u>

Pressure Coefficient for Open Channel Flow?

 $C_p = \frac{-2\Delta p}{\rho V^2}$ <u>Pressure Coefficient</u> (Energy Loss Coefficient)

$$-\Delta p = \gamma h_l$$

 $h_l = S_f l$ Friction slope Slope of EGL

Chezy Equation (1768)

Introduced by the French engineer Antoine Chezy in 1768 while designing a canal for the water-supply system of Paris

$$V = C\sqrt{R_h S_f} \quad \text{compare} \quad V = \sqrt{\frac{2g}{I}}\sqrt{S_f R_h}$$

where C = Chezy coefficient
$$60 \frac{\sqrt{m}}{s} < C < 150 \frac{\sqrt{m}}{s} \qquad 0.0054 > I > 0.00087 \quad \text{For a pipe}$$

$$0.022 > f > 0.0035 \qquad d = 4R_h$$

where 60 is for rough and 150 is for smooth also a function of **R** (like f in Darcy-Weisbach)

Manning Equation (1891)

 \succ Most popular in U.S. for open channels $V = \frac{1}{-} R_{\rm h}^{2/3} S_{\rm o}^{1/2}$ (MKS units!) Dimensions of *n*? T /L^{1/3} n Is *n* only a function of roughness? NO! $V = \frac{1.49}{n} R_{\rm h}^{2/3} S_{\rm o}^{1/2} \qquad \text{(English system)}$ Bottom slope Q = VA $Q = \frac{1}{-}AR_h^{2/3}S_o^{1/2}$ very sensitive to *n* n

Values of Manning *n*

Lined Canals	n
Cement plaster	0.011
Untreated gunite	0.016
Wood, planed	0.012
Wood, unplaned	0.013
Concrete, trowled	0.012
Concrete, wood forms, unfinished	0.015
Rubble in cement	0.020
Asphalt, smooth	0.013
Asphalt, rough	0.016
Natural Channels	
Gravel beds, straight	0.025
Gravel beds plus large boulders	0.040
Earth, straight, with some grass	0.026
Earth, winding, no vegetation	0.030
Earth, winding with vegetation	0.050

n = f(surface roughness, channel irregularity, stage...)

 $n = 0.031d^{1/6}$ d in ft $n = 0.038d^{1/6}$ d in m

d = median size of bed material

Trapezoidal Channel

$$Q = \frac{1}{n} A R_h^{2/3} S_o^{1/2}$$

Derive P = f(y) and A = f(y) for a trapezoidal channel

How would you obtain y = f(Q)?

Flow in Round Conduits

Velocity Distribution

$$v(y) = V + \frac{1}{\kappa}\sqrt{gdS_0}\left(1 + \ln\frac{y}{d}\right)$$

For channels wider than 10d

k » 0.4 Von Kármán constant

V = average velocity

d = channel depth

At what elevation does the velocity equal the average velocity?

$$-1 = \ln \frac{y}{d}$$
 $y = \frac{1}{e}d$ 0.368d

Open Channel Flow: Energy Relations

Bottom slope (S_0) not necessarily equal to EGL slope (S_f)

Energy Relationships

Energy Equation for Open Channel Flow

$$y_1 + \frac{V_1^2}{2g} + S_o Dx = y_2 + \frac{V_2^2}{2g} + S_f Dx$$

Specific Energy

The sum of the depth of flow and the velocity head is the specific energy:

$$E = y + \frac{V^2}{2g}$$

$$E_1 + S_o \Delta x = E_2 + S_f \Delta x$$

$$y - \underline{\text{potential energy}}$$

$$y - \underline{\text{potential energy}}$$

$$\frac{V^2}{2g} - \underline{\text{kinetic}}$$

$$\frac{V^2}{2g}$$

If channel bottom is horizontal and no head loss $E_1 = E_2$ For a change in bottom elevation $E_1 - D_V = E_2$

Specific Energy

In a channel with constant discharge, Q

$$Q = A_1 V_1 = A_2 V_2$$

$$E = y + \frac{V^2}{2g} \longrightarrow E = y + \frac{Q^2}{2gA^2} \text{ where A=f(y)}$$

Consider rectangular channel (A = By) and Q = qB

 $E = y + \frac{q^2}{2gy^2}$ q is the discharge per unit width of channel y A

B

3 roots (one is negative)

How many possible depths given a specific energy? $\frac{2}{2}$

Specific Energy: Sluice Gate

Specific Energy: Raise the Sluice Gate

as sluice gate is raised y_1 approaches y_2 and E is minimized: Maximum discharge for given energy.

Step Up with Subcritical Flow

Max Step Up

Short, smooth step with maximum rise Δy in channel

Critical Flow

Find critical depth, y_c

Arbitrary cross-section

Critical Flow: Rectangular channel

$1 = \frac{Q^2 T_c}{\alpha A^3}$	$T = T_c$
Q = qT	$A_c = y_c T$

 $q = \sqrt{g v_c^3}$

Only for rectangular channels!

Given the depth we can find the flow!

Critical Flow Relationships: Rectangular Channels

Critical Depth

Minimum energy for a given q Occurs when $\frac{dE}{dy} = 0$ When kinetic = potential! $\frac{V_c^2}{2g} = \frac{y_c}{2}$ Fr=1

Characteristics

$$\frac{dE}{dy} = 0$$

1

- Unstable surface
- Series of standing waves

Difficult to measure depth

Occurrence

- > Broad crested weir (and other weirs)
- Channel Controls (rapid changes in cross-section)
- ≻ Over falls
- Changes in channel slope from mild to steep
- Used for flow measurements
 - Unique relationship between depth and discharge