Open Channel Flow

$>$ Liquid (water) flow with a free surface (interface between water and air)
$>$ relevant for
$>$ natural channels: rivers, streams
$>$ engineered channels: canals, sewer lines or culverts (partially full), storm drains
$>$ of interest to hydraulic engineers
$>$ location of free surface
$>$ velocity distribution
$>$ discharge - stage (depth) relationships
$>$ optimal channel design

Topics in Open Channel Flow

$>$ Uniform Flow normal depth
$>$ Discharge-Depth relationships
$>$ Channel transitions
$>$ Control structures (sluice gates, weirs...)
$>$ Rapid changes in bottom elevation or cross section
$>$ Critical, Subcritical and Supercritical Flow
$>$ Hydraulic Jump
$>$ Gradually Varied Flow
$>$ Classification of flows
$>$ Surface profiles

Classification of Flows

$>$ Steady and Unsteady (Temporal)
$>$ Steady: velocity at a given point does not change with time
$>$ Uniform, Gradually Varied, and Rapidly Varied (Spatial)
$>$ Uniform: velocity at a given time does not change within a given length of a channel
$>$ Gradually varied: gradual changes in velocity with distance
$>$ Laminar and Turbulent
$>$ Laminar: flow appears to be as a movement of thin layers on top of each other
$>$ Turbulent: packets of liquid move in irregular paths

Momentum and Energy Equations

$>$ Conservation of Energy
\rightarrow "losses" due to conversion of turbulence to heat
$>$ useful when energy losses are known or small $>$ Contractions
$>$ Must account for losses if applied over long distances $>$ We need an equation for losses
$>$ Conservation of Momentum
$>$ "losses" due to shear at the boundaries
$>$ useful when energy losses are unknown
> Expansion

Open Channel Flow:

Discharge/Depth Relationship

$>$ Given a long channel of constant slope and cross section find the relationship between discharge and depth

- Assume

$>$ Steady Uniform Flow - no acceleration
$>$ prismatic channel (no change in geometry with distance)
$>$ Use Energy, Momentum, Empirical or Dimensional Analysis?
$>$ What controls depth given a discharge?
$>$ Why doesn't the flow accelerate? Force balance

Steady-Uniform Flow: Force Balance

Shear force $=\tau_{0} P \Delta x$

$\frac{A}{P}=\mathrm{R}_{\mathrm{h}} \quad$ Hydraulic radius P

$$
t_{o}=g R_{h} S
$$

Relationship between shear and velocity? Turbulence

$$
S=\frac{\sin \theta}{\cos \theta} \cong \sin \theta
$$

Pressure Coefficient for Open Channel Flow?

$$
\begin{array}{lll}
\mathrm{C}_{p}=\frac{-2 \Delta p}{\rho V^{2}} & \underline{\text { Pressure Coefficient }} & -\Delta p=\gamma h_{l} \\
\mathrm{C}_{h_{l}}=\frac{2 g h_{l}}{V^{2}} & \underline{\text { Energy Loss Coefficient })} & h_{l}=S_{f} l \\
\mathrm{C}_{S_{f}}=\frac{2 g S_{f} l}{V^{2}} & \underline{\text { Friction slope coefficient }} & \underline{\text { Friction slope }} \\
\hline \text { Slope of EGL }
\end{array}
$$

Chezy Equation (1768)

$>$ Introduced by the French engineer Antoine Chezy in 1768 while designing a canal for the water-supply system of Paris

$$
V=C \sqrt{R_{h} S_{f}} \quad \text { compare } \quad V=\sqrt{\frac{2 g}{I}} \sqrt{S_{f} R_{h}}
$$

where $\mathrm{C}=$ Chezy coefficient

$$
60 \frac{\sqrt{m}}{s}<\mathrm{C}<150 \frac{\sqrt{m}}{s} \quad \begin{array}{ccc}
0.0054>1>0.00087 & \text { For a pipe } \\
0.022>\mathrm{f}>0.0035 & d=4 R_{h}
\end{array}
$$

where 60 is for rough and 150 is for smooth
also a function of \mathbf{R} (like f in Darcy-Weisbach)

Manning Equation (1891)

> Most popular in U.S. for open channels

$$
V=\frac{1}{n} \mathrm{R}_{\mathrm{h}}^{2 / 3} \mathrm{~S}_{\mathrm{o}}^{1 / 2}
$$

(MKS units!)
Dimensions of $n ? \quad \mathrm{~T} / \mathrm{L}^{1 / 3}$
Is n only a function of roughness? NO!
$V=\frac{1.49}{n} \mathrm{R}_{\mathrm{h}}^{2}$
$Q=V A$
(English system)
$Q=\frac{1}{n} A R_{h}^{2 / 3} S_{o}^{1 / 2} \quad$ very sensitive to n

Values of Manning n

Lined Canals	n	$\mathrm{n}=\mathrm{f}$ (surface
Cement plaster	0.011	
Untreated gunite	0.016	
Wood, planed	0.012	
Wood, unplaned	0.013	roughness,
Concrete, trowled	0.012	
Concrete, wood forms, unfinished	0.015	channel
Rubble in cement	0.020	
Asphalt, smooth	0.013	irregularity,
Asphalt, rough	0.016	stage...)
N atural Channels		
Gravel beds, straight	0.025	
Gravel beds plus large boulders	0.040	
Earth, straight, with some grass	0.026	
Earth, winding, no vegetation	0.030	
Earth, winding with vegetation	0.050	

$$
\begin{aligned}
& n=0.031 d^{1 / 6} \mathrm{~d} \text { in } \mathrm{ft} \\
& n=0.038 d^{1 / 6} \mathrm{~d} \text { in } \mathrm{m}
\end{aligned}
$$

Trapezoidal Channel

$$
Q=\frac{1}{n} A R_{h}^{2 / 3} S_{o}^{1 / 2}
$$

\Rightarrow Derive $\mathrm{P}=\mathrm{f}(\mathrm{y})$ and $\mathrm{A}=\mathrm{f}(\mathrm{y})$ for a trapezoidal channel
$>$ How would you obtain $y=f(Q)$?

$$
A=y b+y^{2} z
$$

Flow in Round Conduits

$$
\theta=\arccos \left(\frac{r-y}{r}\right)
$$

radians
$A=r^{2}(\theta-\sin \theta \cos \theta)$
$T=2 r \sin \theta$
$P=2 r \theta$
Maximum discharge when $\mathrm{y}=\underline{0.938 \mathrm{~d}}$

Velocity Distribution

$v(y)=V+\frac{1}{\kappa} \sqrt{g d S_{0}}\left(1+\ln \frac{y}{d}\right)$
For channels wider than 10d
k » 0.4 Von Kármán constant
$\mathrm{V}=$ average velocity
d = channel depth
At what elevation does the velocity equal the average

.....) [... ${ }_{\text {In }}$] velocity?
$-1=\ln \frac{y}{d} \quad y=\frac{1}{e} d \quad 0.368 \mathrm{~d}$

Open Channel Flow: Energy Relations

Bottom slope $\left(\mathrm{S}_{\mathrm{o}}\right)$ not necessarily equal to EGL slope $\left(\mathrm{S}_{f}\right)$

Energy Relationships

Pipe flow
z - measured from
horizontal datum

Energy Equation for Open Channel Flow

$$
y_{1}+\frac{V_{1}^{2}}{2 g}+S_{o} \mathrm{D} x=y_{2}+\frac{V_{2}^{2}}{2 g}+S_{f} \mathrm{D} x
$$

Specific Energy

> The sum of the depth of flow and the velocity head is the specific energy:

$$
E=y+\frac{V^{2}}{2 g} \quad \frac{y-\text { potential energy }}{} \quad \frac{V^{2}}{2 g}-\text { kinetic energy }
$$

If channel bottom is horizontal and no head loss

$$
E_{1}=E_{2}
$$

For a change in bottom elevation

$$
E_{1}-\mathrm{D}_{1}=E_{2}
$$

Specific Energy

In a channel with constant discharge, Q

$$
\begin{gathered}
Q=A_{1} V_{1}=A_{2} V_{2} \\
E=y+\frac{V^{2}}{2 g} \longrightarrow E=y+\frac{Q^{2}}{2 g A^{2}} \text { where } \mathrm{A}=\mathrm{f}(\mathrm{y})
\end{gathered}
$$

Consider rectangular channel $(\mathrm{A}=\mathrm{By})$ and $\mathrm{Q}=\mathrm{qB}$

$$
E=y+\frac{q^{2}}{2 g y^{2}}
$$

3 roots (one is negative)
q is the discharge per unit width of channel

B
How many possible depths given a specific energy? 2

Specific Energy: Sluice Gate

Given downstream depth and discharge, find upstream depth.
y_{1} and y_{2} are alternate depths (same specific energy)
Why not use momentum conservation to find y_{1} ?

Specific Energy: Raise the Sluice Gate

as sluice gate is raised y_{1} approaches y_{2} and E is minimized: Maximum discharge for given energy.

Step Up with Subcritical Flow

Short, smooth step with rise Δy in channel
Given upstream depth and discharge find y_{2}

Is alternate depth possible? NO! Calculate depth along step.

Max Step Up

Short, smooth step with maximum rise Δy in channel
What happens if the step is increased further? y_{1} increases

Critical Flow

Find critical depth, y_{c}
Arbitrary cross-section

$$
\begin{gathered}
\frac{d E}{d y}=0 \\
E=y+\frac{Q^{2}}{2 g A^{2}} \quad \mathrm{~A}=\mathrm{f}(\mathrm{y}) \quad \mathrm{T} \\
\frac{d E}{d y}=1-\frac{Q^{2}}{g A^{3}} \frac{d A}{d y}=0 \quad d A=\underline{T d y} \quad \mathrm{~T}=\text { surface width } \\
1=\frac{Q^{2} T_{c}}{g A_{c}^{3}} \quad \frac{Q^{2} T}{g A^{3}}=F r^{2} \\
\frac{V^{2} T}{g A}=F r^{2} \quad \frac{A}{T}=D \quad \text { Hydraulic Depth }
\end{gathered}
$$

Critical Flow:

Rectangular channel

$$
\begin{gathered}
1=\frac{Q^{2} T_{c}}{g A_{c}^{3}} \quad T=T_{c} \\
Q=q T \quad A_{c}=y_{c} T \\
1=\frac{q^{2} T^{3}}{g y_{c}^{3} T^{3}}=\frac{q^{2}}{g y_{c}^{3}} \\
y_{c}=\left(\frac{q^{2}}{g}\right)^{1 / 3} \quad \text { Only for rectangular channels! } \\
q=\sqrt{g y_{c}^{3}} \quad \text { Given the depth we can find the flow! }
\end{gathered}
$$

Critical Flow Relationships: Rectangular Channels

$$
\begin{aligned}
& y_{c}=\left(\frac{q^{2}}{g}\right)^{1 / 3} y_{c}^{3}=\left(\frac{V_{c}^{2} y_{c}^{2}}{g}\right) \quad \text { because } q=V_{c} y_{c} \\
& \frac{V_{c}}{\sqrt{y_{c} g}}=1 \quad \underline{\text { Froude number }} \quad \frac{\text { inertial force }}{\text { gravity force }} \sqrt{\frac{\text { Kinetic energy }}{\text { Potential energy }}} \\
& y_{c}=\frac{V_{c}^{2}}{g} \longrightarrow \frac{y_{c}}{2}=\frac{V_{c}^{2}}{2 g} \quad \text { velocity head }=\underline{0.5(\text { depth })} \\
& E=y+\frac{V^{2}}{2 g} \longrightarrow E=y_{c}+\frac{y_{c}}{2} \longrightarrow y_{c}=\frac{2}{3} E
\end{aligned}
$$

Critical Depth

$>$ Minimum energy for a given q
$>$ Occurs when $\frac{d E}{d y}=0$
$>$ When
$>\mathrm{Fr}=1$
$F r=\frac{V_{c}}{\sqrt{y_{c} g}}=\frac{q}{\sqrt{g y_{c}^{3}}}=Q \sqrt{\frac{T}{g A^{3}}}$
$>$ Fr $>1=$ Super critical
$>\operatorname{Fr}<1=$ Sub critical

Critical Flow

>2

$$
\frac{d E}{d y}=0
$$

Difficult to measure depth
$>$ Occurrence
$>$ Broad crested weir (and other weirs)
$>$ Channel Controls (rapid changes in cross-section)
$>$ Over falls
$>$ Changes in channel slope from mild to steep
$>$ Used for flow measurements
$>$ Unique relationship between depth and discharge

