Gradually Varied Flow:

Find Change in Depth wrt x

$$
\begin{array}{ll}
y_{1}+\frac{V_{1}^{2}}{2 g}+S_{o} \Delta x=y_{2}+\frac{V_{2}^{2}}{2 g}+S_{f} \Delta x & \begin{array}{l}
\text { Energy equation for non- } \\
\text { uniform, steady flow }
\end{array} \\
S_{o} d x=\left(y_{2}-y_{1}\right)+\left(\frac{V_{2}^{2}}{2 g}-\frac{V_{1}^{2}}{2 g}\right)+S_{f} d x & \text { Shrink control volume } \\
d y=y_{2}-y_{1} & \mathrm{~T} \\
d y+d\left(\frac{V^{2}}{2 g}\right)+S_{f} d x=S_{o} d x & \mathrm{y} \\
\frac{d y}{d y}+\frac{d}{d y}\left(\frac{V^{2}}{2 g}\right)+S_{f} \frac{d x}{d y}=S_{o} \frac{d x}{d y} & \mathrm{P}
\end{array}
$$

Gradually Varied Flow:

Derivative of KE wrt Depth

$$
\begin{aligned}
& \frac{d}{d y}\left(\frac{V^{2}}{2 g}\right)=\frac{d}{d y}\left(\frac{Q^{2}}{2 g A^{2}}\right)=\left(\frac{-2 Q^{2}}{2 g A^{3}}\right) \cdot \frac{d A}{d y}=\left(\frac{-Q^{2} T}{g A^{3}}\right)=-F r^{2} \\
& \frac{d y}{d y}+\frac{d}{d y}\left(\frac{V^{2}}{2 g}\right)+S_{f} \frac{d x}{d y}=S_{o} \frac{d x}{d y} \quad \quad \frac{\text { Change in KE }}{\text { Change in PE }} \quad d A=T d y \\
& \text { We are holding } \mathrm{Q} \text { constant! } \\
& 1-F r^{2}+S_{f} \frac{d x}{d y}=S_{o} \frac{d x}{d y} \\
& \text { Does } \mathrm{V}=\mathrm{Q} / \mathrm{A} \text { ? Is } \mathrm{V} \perp \mathrm{~A} \text { ? } \\
& \underline{d y}=\underline{S_{o}-S_{f}} \text { The water surface slope is a function of: } \\
& d x \quad 1-F r^{2} \quad \text { bottom slope, friction slope, Froude number }
\end{aligned}
$$

Gradually Varied Flow: Governing equation

$\frac{d y}{d x}=\frac{S_{o}-S_{f}}{1-F r^{2}}$
Governing equation for
gradually varied flow
$>$ Gives change of water depth with distance along channel
> Note
$\Rightarrow \mathrm{S}_{\mathrm{o}}$ and S_{f} are positive when sloping down in direction of flow
$\Rightarrow y$ is measured from channel bottom
$>\mathrm{dy} / \mathrm{dx}=0$ means water depth is constant
$\mathbf{y}_{\mathbf{n}}$ is when $S_{o}=S_{f}$

Surface Profiles

\rightarrow Mild slope $\left(\mathrm{y}_{\mathrm{n}}>\mathrm{y}_{\mathrm{c}}\right)$
$>$ in a long channel subcritical flow will occur
$>$ Steep slope $\left(\mathrm{y}_{\mathrm{n}}<\mathrm{y}_{\mathrm{c}}\right)$
$>$ in a long channel supercritical flow will occur
$>$ Critical slope $\left(\mathrm{y}_{\mathrm{n}}=\mathrm{y}_{\mathrm{c}}\right)$
$>$ in a long channel unstable flow will occur
$>$ Horizontal slope $\left(\mathrm{S}_{\mathrm{o}}=0\right)$
$>\mathrm{y}_{\mathrm{n}}$ undefined
$>$ Adverse slope $\left(\mathrm{S}_{0}<0\right)$
$>y_{n}$ undefined
Note: These slopes are $f(Q)$!

Surface Profiles

Normal depth $\vec{\rightarrow}$
 M_{1}
 Sluice gate $\rightarrow>\rightarrow$ Mild
 Obstruction Steep slope $\left(\mathrm{S}_{2}\right)$ Hydraulic Jump

$\frac{d y}{d x}=\frac{S_{o}-S_{f}}{1-F r^{2}}$

$$
\mathrm{S}_{0}-\mathrm{S}_{f} \quad 1-\mathrm{Fr}^{2} \quad \mathrm{dy} / \mathrm{dx}
$$

More Surface Profiles

Direct Step Method

$$
y_{1}+\frac{V_{1}^{2}}{2 g}+S_{o} \Delta x=y_{2}+\frac{V_{2}^{2}}{2 g}+S_{f} \Delta x \quad \text { energy equation }
$$

$$
\Delta x=\frac{y_{1}-y_{2}+\frac{V_{1}^{2}}{2 g}-\frac{V_{2}^{2}}{2 g}}{S_{f}-S_{o}} \quad \text { solve for } \Delta \mathrm{x}
$$

rectangular channel

$$
V_{1}=\frac{q}{y_{1}} \quad V_{2}=\frac{q}{y_{2}} \quad V_{2}=\frac{Q}{A_{2}} \quad V_{1}=\frac{Q}{A_{1}}
$$

Direct Step Method Friction Slope

Manning
$S_{f}=\frac{n^{2} V^{2}}{R_{h}^{4 / 3}} \quad$ SI units
$S_{f}=\frac{n^{2} V^{2}}{2.22 R_{h}^{4 / 3}} \quad$ English units

Darcy-Weisbach

$$
S_{f}=\mathrm{f} \frac{V^{2}}{8 g R_{h}}
$$

Direct Step

$>$ Limitation: channel must be prismatic (channel geometry is independent of x so that velocity is a function of depth only and not a function of x)
$>$ Method
$>$ identify type of profile (determines whether $\Delta \mathrm{y}$ is + or -)
\Rightarrow choose $\Delta \mathrm{y}$ and thus $\mathrm{y}_{\mathrm{i}+1}$
$>$ calculate hydraulic radius and velocity at y_{i} and y_{i+1}
$>$ calculate friction slope given y_{i} and $\mathrm{y}_{\mathrm{i}+1}$
$>$ calculate average friction slope
$>$ calculate Δx

Direct Step Method

	$=y^{*}$	$\begin{array}{r} \mathrm{b}+\mathrm{y}^{\wedge} 2 \\ =2 * \end{array}$	$2 * z$ $y^{*}(1+$ $=\mathrm{A} / \mathrm{F}$	z^2)	${ }^{\wedge} 0.5+\mathrm{b}$ A $=(\mathrm{n} *)$	$)^{\wedge} 2 / \mathrm{H}$ $=y+$	$\begin{aligned} & \Delta x \\ & h^{\wedge}(4 / 3 \\ & \left(\mathrm{V}^{\wedge} 2\right) /(\\ & =(\mathrm{G} 16 \end{aligned}$		5)	$y_{2}+$ S_{f} F15+	S_{o} 16)/2	$2 g$ So)
A	B	C	D	E	F	G	H	I	J	K	L	M
y	A	P	Rh	V	Sf	E	Dx	X	T	Fr	bottom	surface
0.900	1.799	4.223	0.426	0.139	0.00004	0.901		0	3.799	0.065	0.000	0.900
0.870	1.687	4.089	0.412	0.148	0.00005	0.871	0.498	0.5	3.679	0.070	0.030	0.900

Standard Step

$>$ Given a depth at one location, determine the depth at a second given location
$>$ Step size $(\Delta \mathrm{x})$ must be small enough so that changes in water depth aren't very large. Otherwise estimates of the friction slope and the velocity head are inaccurate
$>$ Can solve in upstream or downstream direction
$>$ Usually solved upstream for subcritical
$>$ Usually solved downstream for supercritical
$>$ Find a depth that satisfies the energy equation

$$
y_{1}+\frac{V_{1}^{2}}{2 g}+S_{o} \Delta x=y_{2}+\frac{V_{2}^{2}}{2 g}+S_{f} \Delta x
$$

What curves are available? Steep Slope

Is there a curve between y_{c} and y_{n} that increases in depth in the downstream direction? NO!

Mild Slope

$>$ If the slope is mild, the depth is less than the critical depth, and a hydraulic jump occurs, what happens next?

Rapidly varied flow!
When dy/dx is large then
V isn't normal to cs

Hydraulic jump! Check conjugate depths

