Gradually Varied Flow: Find Change in Depth wrt x

$$y_{1} + \frac{V_{1}^{2}}{2g} + S_{o}\Delta x = y_{2} + \frac{V_{2}^{2}}{2g} + S_{f}\Delta x$$

Energy equation for non-
uniform, steady flow

$$S_{o}dx = (y_{2} - y_{1}) + \left(\frac{V_{2}^{2}}{2g} - \frac{V_{1}^{2}}{2g}\right) + S_{f}dx$$

Shrink control volume

$$\frac{T}{dy} = y_{2} - y_{1}$$

$$dy + d\left(\frac{V^{2}}{2g}\right) + S_{f}dx = S_{o}dx$$

$$\frac{dy}{dy} + \frac{d}{dy}\left(\frac{V^{2}}{2g}\right) + S_{f}\frac{dx}{dy} = S_{o}\frac{dx}{dy}$$

P

Gradually Varied Flow: Derivative of KE wrt Depth $\frac{d}{dy}\left(\frac{V^2}{2g}\right) = \frac{d}{dy}\left(\frac{Q^2}{2gA^2}\right) = \left(\frac{-2Q^2}{2gA^3}\right) \cdot \frac{dA}{dy} = \left(\frac{-Q^2T}{gA^3}\right) = -Fr^2$ $\frac{dy}{dy} + \frac{d}{dy}\left(\frac{V^2}{2g}\right) + S_f \frac{dx}{dv} = S_o \frac{dx}{dv}$ Change in KE Change in PE dA = TdyWe are holding Q constant! $1 - Fr^2 + S_f \frac{dx}{dy} = S_o \frac{dx}{dy}$ Does V=Q/A? Is V \perp A?

 $\frac{dy}{dx} = \frac{S_o - S_f}{1 - Fr^2}$ The water surface slope is a function of: bottom slope, friction slope, Froude number Gradually Varied Flow: Governing equation

Governing equation for gradually varied flow

- Gives change of water depth with distance along channel
- > Note
 - > S_o and S_f are positive when sloping down in direction of flow
 - y is measured from channel bottom
 y dy/dx =0 means water depth is <u>constant</u>
 y is when <u>S₀ = Sf</u>

Surface Profiles

- > Mild slope $(y_n > y_c)$
 - ➢ in a long channel subcritical flow will occur
- > Steep slope $(y_n < y_c)$
 - ➢ in a long channel supercritical flow will occur
- \succ Critical slope (y_n=y_c)
 - ➢ in a long channel unstable flow will occur
- \succ Horizontal slope (S_o=0)
 - > y_n undefined
- > Adverse slope ($S_o < 0$)
 - > y_n undefined

Note: These slopes are f(Q)!

Surface Profiles

More Surface Profiles

Direct Step Method

Direct Step Method Friction Slope

Manning		Darcy-Weisbach					
$S_{f} = \frac{n^{2}V^{2}}{R_{h}^{4/3}}$	SI units	$S_f = f \frac{V^2}{8gR_h}$					
$S_f = \frac{n^2 V^2}{2.22 R_h^{4/3}}$	English units						

Direct Step

- Limitation: channel must be <u>prismatic</u> (channel geometry is independent of x so that velocity is a function of depth only and not a function of x)
- ➢ Method
 - identify type of profile (determines whether ∆y is + or -)
 - \succ choose Δy and thus y_{i+1}
 - \succ calculate hydraulic radius and velocity at y_i and y_{i+1}
 - \succ calculate friction slope given y_i and y_{i+1}
 - > calculate average friction slope
 - \succ calculate Δx

Direct Step Method

	_=y*	*b+y^2	2*z								T / 2	U^2	
		$=2*y*(1+z^2)^0.5+b$					$y_1 - y_2 + \frac{v_1}{2} - \frac{v_2}{2}$						
		=A/P				$\Delta x = - 2g 2g$							
				=Q/	'A					S_f –	S_o		
		$=(n*V)^2/Rh^4/3)$											
		$=y+(V^2)/(2*g)$											
	V	$ \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad = (G16-G15)/((F15+F16)/2-So) $									-So)		
А	В	С	D	E	F	G	Η	Ι	J	Κ	L	М	
у	Α	Ρ	Rh	V	Sf	E	Dx	X	Τ	Fr	bottom	surface	
0.900	1.799	4.223	0.426	0.139	0.00004	0.901		0	3.799	0.065	0.000	0.900	
0.870	1.687	4.089	0.412	0.148	0.00005	0.871	0.498	0.5	3.679	0.070	0.030	0.900	

Standard Step

- Given a depth at one location, determine the depth at a second given location
- ➤ Step size (∆x) must be small enough so that changes in water depth aren't very large. Otherwise estimates of the friction slope and the velocity head are inaccurate
- Can solve in upstream or downstream direction
 - Usually solved upstream for subcritical
 - Usually solved downstream for supercritical
- > Find a depth that satisfies the energy equation

$$y_1 + \frac{V_1^2}{2g} + S_o \Delta x = y_2 + \frac{V_2^2}{2g} + S_f \Delta x$$

What curves are available? Steep Slope

Is there a curve between y_c and y_n that increases in depth in the downstream direction? <u>NO!</u>

Mild Slope

➤ If the slope is mild, the depth is less than the critical depth, and a hydraulic jump occurs, what happens next?

Rapidly varied flow!

When dy/dx is large then V isn't normal to cs

Hydraulic jump! Check conjugate depths

