Broad-Crested Weir

$$
\begin{aligned}
& y_{c}=\left(\frac{q^{2}}{g}\right)^{1 / 3} \\
& q=\sqrt{g y_{c}^{3}} \\
& Q=b \sqrt{g y_{c}^{3}} \\
& y_{c}=\frac{2}{3} E \\
& Q=b \sqrt{g}\left(\frac{2}{3}\right)^{3 / 2} E^{3 / 2} \\
& Q=C_{d} b \sqrt{g}\left(\frac{2}{3} H\right)^{3 / 2} \\
& \underline{\text { Hard to measure } y_{c}} \\
& \text { E measured from top of weir } \\
& \mathrm{C}_{\mathrm{d}} \text { corrects for using } \mathrm{H} \text { rather } \\
& \text { than } \mathrm{E} \text {. }
\end{aligned}
$$

Broad-crested Weir: Example

$>$ Calculate the flow and the depth upstream. The channel is 3 m wide. Is H approximately equal to E ?

How do you find flow? Critical flow relation
How do you find H? Energy equation

Could a hydraulic jump be laminar?

Hydraulic Jump

$>$ Used for energy dissipation
$>$ Occurs when flow transitions from supercritical to subcritical
$>$ base of spillway
$>$ Steep slope to mild slope
$>$ We would like to know depth of water downstream from jump as well as the location of the jump
$>$ Which equation, Energy or Momentum?

Hydraulic Jump

$\mathbf{M}_{1}+\mathbf{M}_{2}=\boldsymbol{W}+\mathbf{F}_{p_{1}}+\mathbf{F}_{p_{2}}+\boldsymbol{F} /{ }_{s s}$ Conservation of Momentum
EGL

$$
\begin{aligned}
& M_{1 x}+M_{2 x}=F_{p} \\
& M_{1 x}=-\rho V_{1}^{2} A_{1} \\
& M_{2 x}=\rho V_{2}^{2} A_{2}
\end{aligned}
$$

$$
\begin{aligned}
& -\rho Q V_{1}+\rho Q V_{2}=\bar{p}_{1} A_{1}-\bar{p}_{2} A_{2} \\
& -\frac{Q^{2}}{A_{1}}+\frac{Q^{2}}{A_{2}}=\frac{g y_{1} A_{1}}{2}-\frac{g y_{2} A_{2}}{2} \\
& \hline p=\frac{r g y}{2}
\end{aligned}
$$

Hydraulic Jump: Conjugate Depths

For a rectangular channel make the following substitutions

$$
\begin{array}{rl}
A=B y & Q=B y_{1} V_{1} \\
F r_{1}=\frac{V_{1}}{\sqrt{g y_{1}}} & \text { Froude number }
\end{array}
$$

Much algebra $\longrightarrow y_{2}=\frac{y_{1}}{2}\left(-1+\sqrt{1+8 F r_{1}^{2}}\right)$

$$
\frac{y_{2}}{y_{1}}=\frac{-1+\sqrt{1+8 F r_{1}^{2}}}{2}
$$

valid for slopes <0.02

Hydraulic Jump:

Energy Loss and Length

π Energy Loss $\quad E_{1}=E_{2}+h_{L}$

$$
E=y+\frac{q^{2}}{2 g y^{2}} \xrightarrow{\text { algebra }} h_{L}=\frac{\left(y_{2}-y_{1}\right)^{3}}{4 y_{1} y_{2}}
$$

significant energy loss (to turbulence) in jump
7 Length of jump
No general theoretical solution
Experiments show

$$
L=6 y_{2} \text { for } 4.5<F r_{1}<13
$$

Specific Momentum

$$
\begin{aligned}
& \frac{g y_{1} A_{1}}{2}+\frac{Q^{2}}{A_{1}}=\frac{g y_{2} A_{2}}{2}+\frac{Q^{2}}{A_{2}} \\
& \frac{y_{1} A_{1}}{2}+\frac{Q^{2}}{A_{1} g}=\frac{y_{2} A_{2}}{2}+\frac{Q^{2}}{A_{2} g} \\
& \frac{y_{1}^{2}}{2}+\frac{q^{2}}{y_{1} g}=\frac{y_{2}^{2}}{2}+\frac{q^{2}}{y_{2} g}
\end{aligned}
$$

When is M minimum?

Hydraulic Jump Location

$>$ Suppose a sluice gate is located in a long channel with a mild slope. Where will the hydraulic jump be located?
$>$ Outline your solution scheme

Energy Equation $y_{1}+\frac{V_{1}^{2}}{2 g}+S_{0} \mathrm{D}_{\mathrm{x}}=y_{2}+\frac{V_{2}^{2}}{2 g}+S_{f} \mathbf{D} x$

$>$ Specific Energy $\quad E=y+\frac{V^{2}}{2 g}=y+\frac{q^{2}}{2 g y^{2}}=y+\frac{Q^{2}}{2 g A^{2}}$
$>$ Two depths with same energy?
$>$ How do we know which depth ${ }_{4}$ is the right one?
$>$ Is the path to the new depth possible?

