Runoff Estimation, and Surface Erosion and Control

Runoff Estimation

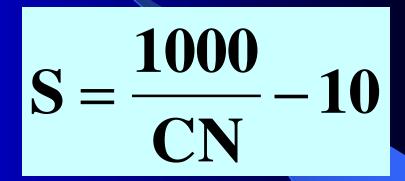
TR55 CN Method

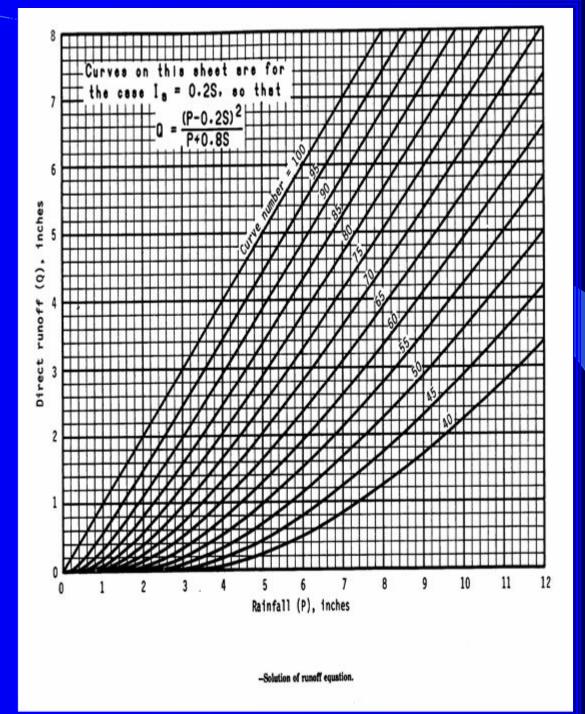
- The SCS has developed a method of determining excess rain based on precipitation depth (P). The model developed by the SCS separates precipitation into three categories:
- Q Direct runoff (excess rain) This is the depth (in) of rain that shows up as runoff.
- F Actual retention. This is the depth (in) of the abstraction
- Ia Initial abstraction This is the depth (in) of rain that must fall before runoff starts.

SCS Runoff Equation

- Where Q = runoff (in)
- P = rainfall (in)
- S = potential maximum retention after runoff begins (in) and
- Ia = initial abstraction (in)

$$\mathbf{Q} = \frac{(\mathbf{P} - \mathbf{I}_a)^2}{(\mathbf{P} - \mathbf{I}_a + \mathbf{S})}$$


- Ia is all losses before runoff begins it includes:
 - water retained in surface depressions,
 - Water interception by vegetation
 - Evaporation and infiltration.


 $(P - 0.2 * S)^2$ (P+0.8*S)

 Ia was found to follow: Ia = 0.2*S

Potential Maximum Retention

- S is related to the soil cover conditions of the watershed through the CN.
- CN has a range of 0 to 100

- The ultimate total retention, S, and the initial abstraction, Ia, are assumed to be dependent on the following properties of the drainage basin:
 - Land use
 - Soil Type: A, B, C, D
 - Soil group A Well drained sand or gravel, high infiltration rate
 - Soil group B Moderately well drained soil, moderate infiltration rate, with fine to moderately coarse texture
 - Soil group C Slow infiltration rate, moderate to fine texture
 - Soil group D Very slow infiltration, mainly clay material, relatively impervious
 - Hydrologic condition good/fair/poor (rural land use only)
 - Antecedent moisture condition (AMC)
 - AMC I Dry soil
 - AMC II Average soil moisture
 - AMC III Wet soil

Appendix A

Hydrologic Soil Groups

Soils are classified into hydrologic soil groups (HSG's) to indicate the minimum rate of infiltration obtained for bare soil after prolonged wetting. The HSG's, which are A, B, C, and D, are one element used in determining runoff curve numbers (see chapter 2). For the convenience of TR-55 users, exhibit A-1 lists the HSG classification of United States soils.

The infiltration rate is the rate at which water enters the soil at the soil surface. It is controlled by surface conditions. HSG also indicates the transmission rate—the rate at which the water moves within the soil. This rate is controlled by the soil profile. Approximate numerical ranges for transmission rates shown in the HSG definitions were first published by Musgrave (USDA 1955). The four groups are defined by SCS soil scientists as follows:

Group Asoils have low runoff potential and high infiltration rates even when thoroughly wetted. They consist chiefly of deep, well to excessively drained sand or gravel and have a high rate of water transmission (greater than 0.30 in/hr).

Group Booils have moderate infiltration rates when thoroughly wetted and consist chiefly of moderately deep to deep, moderately well to well drained soils with moderately fine to moderately coarse textures. These soils have a moderate rate of water transmission (0.15-0.30 in/hr).

Group Csoils have low infiltration rates when thoroughly wetted and consist chiefly of soils with a layer that impedes downward movement of water and soils with moderately fine to fine texture. These soils have a low rate of water transmission (0.05-0.15 in/hr).

Group Dsoils have high runoff potential. They have very low infiltration rates when thoroughly wetted and

Disturbed soil profiles

As a result of urbanization, the soil profile may be considerably altered and the listed group classification may no longer apply. In these circumstances, use the following to determine HSG according to the texture of the new surface soil, provided that significant compaction has not occurred (Brakensiek and Rawls 1983).

HSG	Soil textures
Α	Sand, loamy sand, or sandy loam
В	Silt loam or loam
С	Sandy clay loam
D	Clay loam, silty clay loam, sandy clay, silty clay, or clay

Drainage and group D soils

Some soils in the list are in group D because of a high water table that creates a drainage problem. Once these soils are effectively drained, they are placed in a different group. For example, Ackerman soil is classified as A/D. This indicates that the drained Ackerman soil is in group A and the undrained soil is in group D.

Cover description			Curve numbers for hydrologic soil group				
Cover type and hydrologic condition	Average percent impervious area ²	А	в	с	D		
Fully developed urban areas (vegetation established)							
Open space (lawns, parks, golf courses, cemeteries, etc.) ^a :							
Poor condition (grass cover < 50%)		68	79	86	89		
Fair condition (grass cover 50% to 75%)		49	69	79	84		
Good condition (grass cover > 75%)		39	61	74	80		
Impervious areas:							
Paved parking lots, roofs, driveways, etc.							
(excluding right-of-way)		98	98	98	98		
Streets and roads:							
Paved; curbs and storm sewers (excluding							
right-of-way)		98	98	98	98		
Paved; open ditches (including right-of-way)		83	89	92	93		
Gravel (including right-of-way)		76	85	89	91		
Dirt (including right-of-way)		72	82	87	89		
Western desert urban areas:							
Natural desert landscaping (pervious areas only)4		63	77	85	88		
Artificial desert landscaping (impervious weed							
barrier, desert shrub with 1- to 2-inch sand							
or gravel mulch and basin borders)		96	96	96	96		
Urban districts:							
Commercial and business	85	89	92	94	95		
Industrial	72	81	88	91	93		
Residential districts by average lot size:							
1/8 acre or less (town houses)	65	77	85	90	92		
1/4 acre	38	61	75	83	87		
1/3 acre	30	57	72	81	86		
1/2 acre	25	54	70	80	85		
1 acre	20	51	68	79	84		
2 acres	12	46	65	77	82		
Developing urban areas							
Newly graded areas (pervious areas only,							
no vegetation) ⁵		77	86	91	94		
Idle lands (CN's are determined using cover types			00	51	54		
similar to those in table 2-2c).							
				410			

-Runoff curve numbers for urban areas1

¹Average runoff condition, and I₄ = 0.2S.

*The average percent impervious area shown was used to develop the composite CN's. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CN's for other combinations of conditions may be computed using figure 2-3 or 2-4. *CN's shown are equivalent to those of pasture. Composite CN's may be computed for other combinations of open space cover type. *Composite CN's for natural desert landscaping should be computed using figures 2-3 or 2-4 based on the impervious area percentage (CN * 98) and the pervious area CN. The pervious area CN's are assumed equivalent to desert shrub in poor hydrologic condition. *Composite CN's to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4, based on the degree of development (impervious area percentage) and the CN's for the newly graded pervious areas.

Cover description			Curve numbers for hydrologic soil group—				
Cover type	Treatment ²	Hydrologic condition ³	A _	В	с	D	
Fallow	Bare soil	-	77	86	91	94	
	Crop residue cover (CR)	Poor Good	76 74	85 83	90 88	93 90	
Row crops	Straight row (SR)	Poor Good	72 67	81 78	88 85	91 89	
	SR + CR	Poor Good	71 64	80 75	87 82	90 85	
	Contoured (C)	Poor Good	70 65	79 75	84 82	88 86	
	C + CR	Poor Good	69 64	78 74	83 81	87 85	
	Contoured & terraced (C&T)	Poor Good	66 62	74 71	80 78	82 81	
	C&T + CR	Poor Good	65 61	73 70	79 77	81 80	
'l grain	SR	Poor Good	65 63	76 75	84 83	88 87	
	SR + CR	Poor Good	64 60	75 72	83 80	86 84	
	с	Poor Good	63 61	74 73	82 81	85 84	
	C + CR	Poor Good	62 60	73 72	81 80	84 83	
	C&T	Poor Good	61 59	72 70	79 78	82 81	
	C&T + CR	Poor Good	60 58	71 69 -	78 77	81 80	
Close-seeded or broadcast legumes or rotation meadow	SR	Poor Good	66 58	77 72	85 81	89 85	
	С	Poor Good	64 55	75 69	83 78	85 83	
	C&T	Poor Good	63 51	73 67	80 76	83 80	

-Runoff curve numbers for cultivated agricultural lands'

¹Average runoff condition, and $I_a = 0.2S$. ¹Average runoff condition, and $I_a = 0.2S$. ²(*trap residue cover* applies only if residue is on at least 5% of the surface throughout the year. ³Hydrologic condition is based on combination of factors that affect infiltration and runoff, including (a) density and canopy of vegetative areas, (b) amount of year-round cover. (c) amount of grass or close-seeded legumes in rotations, (d) percent of residue cover on the land sur-face (good $\ge 20\%$), and (e) degree of surface roughness. *Point* Factors impair infiltration and tend to increase runoff. *Cooff* Factors encourage average and better than average infiltration and tend to decrease runoff.

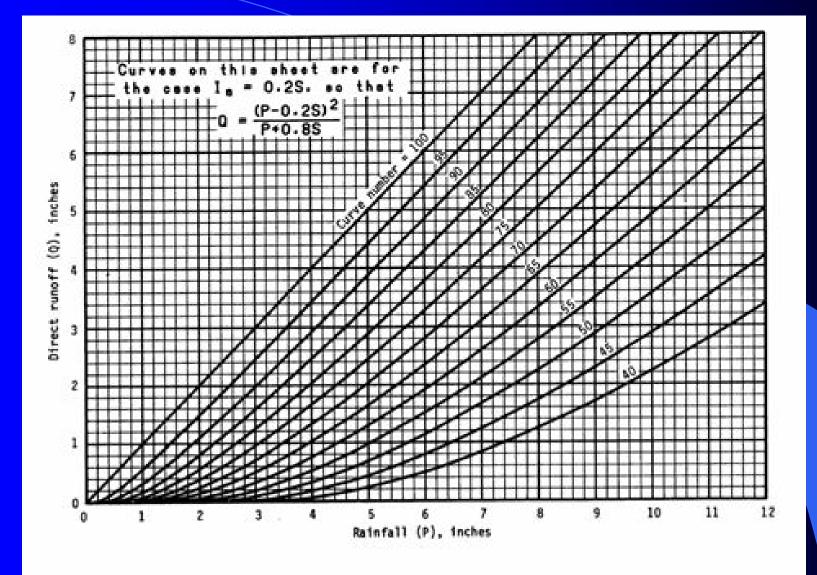
Runoff Curve Numbers²

Runoff curve number for selected agricultural suburban and urban land use (Antecedent moisture condition II and Ia = 0.2 S)

Land Use Description		Hydrologic Soil Group				
Cultivated Land ¹ :	without conservation treatment with conservation treatment	72 62	81 71	88 78	91 81	
Pasture or Range Land: poor condition good condition		68 39	79 61	86 74	89 80	
Meadow:	good condition	30	58	71	78	
Wood or Forest Land: thin stand, poor cover, no mulch good cover ²		45 25	66 55	77 70	83 77	
	Parks, Golf Courses, Cerneteries, etc. grass cover on 75% or more of the area grass cover on 50% to 75% of the area	39 49	61 69	74 79	80 84	
Commercial and Business Areas (85% impervious)		89	92	94	95	
Industrial Districts (72% impervious)		81	88	91	93	
Residential ³ : Average lot size 1/20 hectare or le 1/10 hectare (¹ / ₄ 3/20 hectare (¹ / ₃ 1/5 hectare (¹ / ₂ a 2/5 hectare (1 act	acre) 38 acre) 30 cre) 25 re) 20	77 61 57 54 51	85 75 72 70 68	90 83 81 80 79	92 87 86 85 84	
Paved Parking Lots, Roofs, Driveways, etc. ⁵		98	98	98	98	
Streets and Roads: paved with curbs gravel dirt	and storm sewers ⁵	98 76 72	98 85 82	98 89 87	98 91 89	

Notes: 1 For a more detailed description of agricultural land use curve numbers, refer to National Engineering Handbook, Section 4, Hydrology, Chapter 9, Aug. 19723.

- 2 Good cover is protected from grazing and litter and brush cover soil.
- 3 Curve numbers are computed assuming the runoff from the house and driveway is directed toward the street with a minimum of roof water directed to lawns where additional infiltration could occur.
- 4 The remaining pervious areas (lawn) are considered to be in good pasture condition for these curve numbers.
- 5 In some warmer climates of the country, a curve number of 95 may be used.


Adjustment of curve numbers for dry (condition I) and wet (condition III) antecedent moisture conditions

۰.

= 12

CN for	Corresponding C	N for Condition	
Condition II	I	ш	
100	100	100	
95	87	99	
90	78	98	
85	70	97	
80	63	94	
75	57	91	
70	51	87	
65	45	83	
60	40	79	
55	35	75	
50	31	70	
45	27	65	
40	23	60	
35	19	55	
30 .	15	50	
25	12	45	
20	9	39	
15	7	33	
10	7 4	26	
5	2	17	
0	0	0	

-Solution of runoff equation.

- Example: Use the graphical solution curve to determine the 100-year, 24-hour depth of runoff for a basin with ½-ac lots on a B soil. Use the 100-year, NRC IDF data for the precipitation depth.
- Compute precipitation depth:

 $P_{100,24} = i_{100,24} \times 24hr = (0.33 \text{ in/hr})(24 \text{ hr}) = 7.92 \text{ in}$

• CN = 80.0

Worksheet 2: Runoff curve number and runoff								
Project Heavenly Ac	[₽] y WJR				^{Date} 10/1/85			
Location Dyer County	Checked NM			Date 10/3/85				
Check one: X Present Developed								
1. Runoff curve number								
Soil name . Cover description			CN_1/		Area	Product of		
and hydrologic]	CN x area	
group	(cover type, treatment, and hydrologic condi	tion; percent	3.22	Figure 2-3	824	⊟acres ⊡mi ²		
(appendix A)	impervious; unconnected/connected impervi	ious area ratio)	Table 2	Figur	Figure 2	۵m- ۵%		
Memphis, B	Pasture, good condition					30	1830	
Loring, C	Pasture, good condition					70	5180	
1/ Use only one CN source	per line		Totals 📦 100 7010					
CN (weighted) =total product =7010 =70.1 ; Use CN ▶					70			
2. Runoff								
	-	Storm #1		Stor	m #2		Storm #3	
Frequency	уг	25						
Rainfall, P	(24-hour) in	6.0						
	in	2.81						
	iCN with table 2-1, figure 2-1, or ∟ 2-3 and 2-4)							

Examples

Four examples illustrate the procedure for computing runoff curve number (CN) and runoff (Q) in inches. Worksheet 2 in appendix D is provided to assist TR-55 users. Figures 2-5 to 2-8 represent the use of worksheet 2 for each example. All four examples are based on the same watershed and the same storm event.

The watershed covers 250 acres in Dyer County, northwestern Tennessee. Seventy percent (175 acres) is a Loring soil, which is in hydrologic soil group C. Thirty percent (75 acres) is a Memphis soil, which is in group B. The event is a 25-year frequency, 24-hour storm with total rainfall of 6 inches.

Cover type and conditions in the watershed are different for each example. The examples, therefore, illustrate how to compute CN and Q for various situations of proposed, planned, or present development.

Example 2-1

The present cover type is pasture in good hydrologic condition. (See figure 2-5 for worksheet 2 information.)

Example 2-2

Seventy percent (175 acres) of the watershed, consisting of all the Memphis soil and 100 acres of the Loring soil, is 1/2-acre residential lots with lawns in good hydrologic condition. The rest of the watershed is scattered open space in good hydrologic condition. (See figure 2-6.)

Worksheet 2	: Runoff curve numbe	er and rur	off				
Project Heavenly Ac	By WJR	^{By} WJR				Date 10/1/85	
Location Dyer Count	Checked NM				Date 10/3/85		
Check one: Prese	ent 🖾 Developed	•					
1. Runoff curve r	number		22				
Soil name and	. Cover description			CN 1/		Area	Product of
hydrologic group (appendix A)	(cover type, treatment, and hydrologic con impensious; unconnected/connected imper		Table 2.2	Hgue 2-3	Figure 2-4	băacres ⊡mi² ⊡%	CN x area
Memphis, B	35% impervious 1/2 acre lots, good condition			74		75	5550
Loring, C	35% impervious 1/2 acre lots, good condition			82		100	8200
Loring, C	oring, C Open space, good condition		74			75	5550
23 							
D Use only one CN source CN (weighted) =		;		Total: e CN		250 77	19,300
2. Runoff							
		Storm #1		Stor	m #2		Storm #3
Frequency	/ уг	25					
Rainfall, P	(24-hour) in	6.0					
(Use P an	nd CN with table 2-1, figure 2-1, or 2-3 and 2-4)	3.48					

Soil Erosion

What's soil erosion?

Erosion is the process of detachment and transport of soil particles by erosive agents (Ellison, 1944)

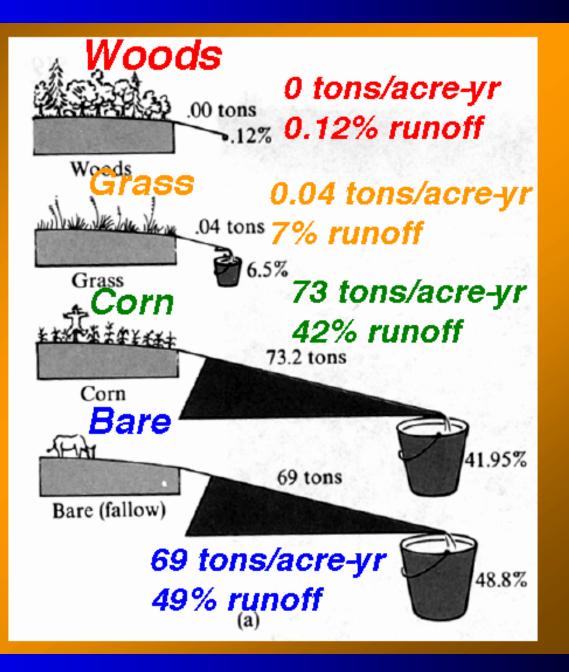
Erosion is a natural geologic process

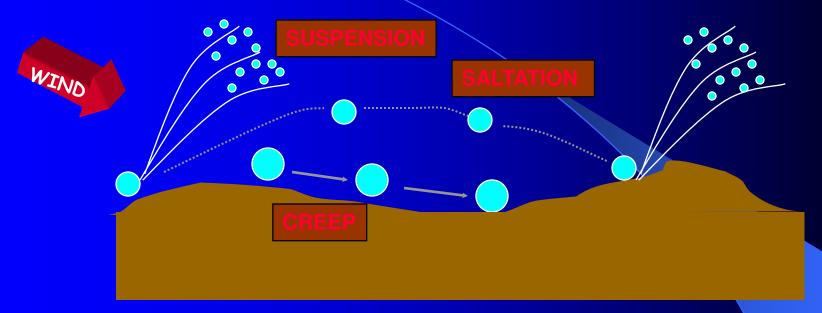
WATER EROSION
WIND EROSION
TILLAGE TRANSLOCATION

SOIL EROSION IS GLOBAL PROBLEM

- 1/3 WORLD'S ARABLE LAND LOST SINCE 1950
- MOST IN ASIA, AFRICA, S. AMERICA 13-18 t/a/yr
- 30% OF US FARMLAND ABANDONED EROSION
 - **SALINIZATION**
 - **WATER-LOGGING**
- 90% OF US CROPLAND LOSING SOIL FASTER THAN IT IS REPLACED PIMENTEL ET AL., 1995 >1 t/a/yr

SIGNIFICANT SOIL LOSS IN THE USA





Soil erosion: Midwest US

WIND EROSION

SALTATION DETACHES PARTICLES
 SMALLER PARTICLES SUSPENDED
 LARGER PARTICLES CREEP
 SANDY AND SILTY SOILS MOST SUSCEPTIBLE
 SOIL ACCUMULATION IN DITCHES AND FENCE ROWS

WIND EROSION CAN BE SIGNIFICANT

Dust bowl

1931-1939 there was a drought called the "dust bowl". It caused huge dust storms to erupt that destructed billions of acres of farm land.

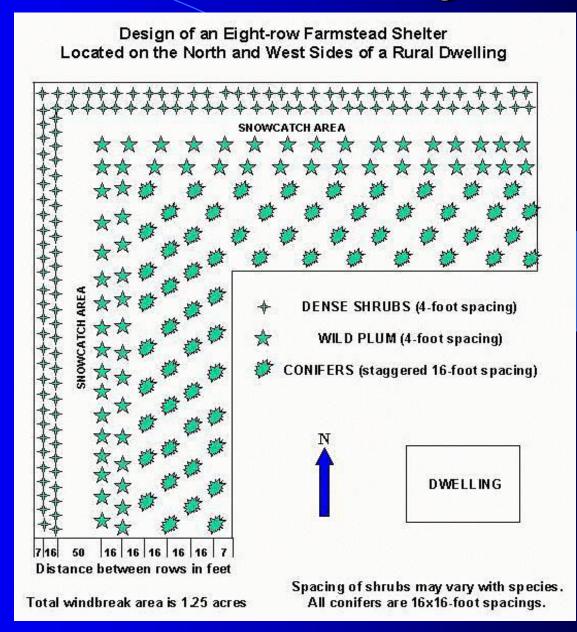
storms

• In the first year of the drought there used to the drought there were 14 storms reported and the second year there were 38 storms. It was getting worse.

Ruined land

 Tons of damage was done to every ones land and it costs billions of dollars to repair the damages.

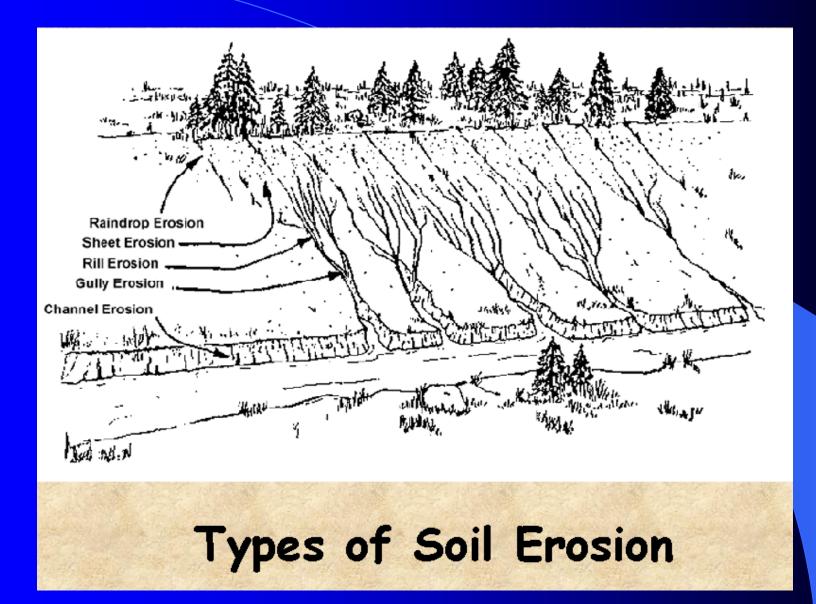
Black Sunday


April 14th, 1934
 black Sunday was
 the worst blizzard
 of the dustbowl
 which caused the
 most extensive
 damage.

REDUCING WIND EROSION

□ MAINTAIN SURFACE COVER **CROP RESIDUE COVER CROPS** □ INCREASE STUBBLE HEIGHT □ INSTALL WINDBREAKS **EFFECTIVE 15x HEIGHT IRRIGATE STRIP CROPS PERPENDICULAR TO PREVAILING WIND**

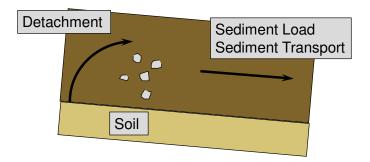
The Shelterbelt Program



WATER EROSION PROCESS

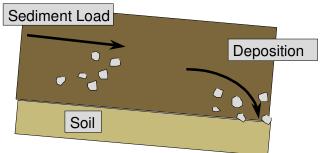
- BEGINS WITH RAINDROPS STRIKING BARE SOIL DISLODGING PARTICLES
- INTENSE RAINS SEAL SURFACE
- WHEN RAINFALL EXCEEDS INFILTRATION WATER IS STORED IN SMALL DEPRESSIONS
- ONCE DEPRESSIONS ARE FILLED, RUNOFF BEGINS

Rainsplash erosion



WATER EROSION PROCESS

- Initially water flows in a discontinuous sheet
- Eventually it concentrates into small channels or rills. The runoff now has energy to break off particles and cut deeper
- The amount of erosion caused by sheet and rill erosion increases with slope and distance
- Rills may eventually form gullies


THE SOIL WATER EROSION PROCESS

DETACHMENT

EFFECTS ON ENVIRONMENTAL QUALITY AND PRODUCTIVITY

- LOSS OF OM, CLAY, AND NUTRIENTS REDUCES PRODUCTIVITY
- DAMAGE TO PLANTS
- FORMATION OF RILLS AND GULLIES AFFECTS MANAGEMENT
- SEDIMENTATION IN WATERWAYS, DIVERSIONS, TERRACES, DITCHES
- DELIVERY OF NUTRIENTS TO SURFACE WATER