Unit Hydrograph

Hydrologic Analysis

The watershed as a hydrologic system.

Change in storage w.r.t. time = inflow - outflow

 $\frac{dS}{dt} = I(t) - Q(t)$

In the case of a linear reservoir, S = kQ

$$k \frac{dQ}{dt} + Q(t) = I(t)$$
$$\Omega = \frac{Q(t)}{I(t)} = \frac{1}{1 + kD}$$

Transfer function for a linear system (S = kQ).

Proportionality and superposition

- Linear system (*k* is constant in S = kQ)
 - Proportionality
 - If $I_1 \rightarrow Q_1$ then $C^*I_2 \rightarrow C^*Q_2$
 - Superposition
 - If $I_1 \rightarrow Q_1$ and $I_2 \rightarrow Q_2$, then $I_1 + I_2 \rightarrow Q_1 + Q_2$

Impulse response function

Impulse input: an input applied instantaneously (spike) at time τ and zero everywhere else

An unit impulse at τ produces as unit impulse response function u(t- τ)

Principle of proportionality and superposition

Convolution integral

- For an unit impulse, the response of the system is given by the unit impulse response function $u(t-\tau)$
- An impulse of 3 units produces the $3u(t-\tau)$
- If I(τ) is the precipitation intensity occurring for a time period of d τ , the response of the system (direct runoff) is I(τ)u(t- τ)d τ
- The complete response due to the input function $I(\tau)$ is $Q(t) = \int_{0}^{t} I(\tau)u(t-\tau)d\tau$
- Response of a linear system is the sum (convolution) of the responses to inputs that have happened in the past.

Step and pulse inputs

- A unit step input is an input that goes from 0 to 1 at time 0 and continues indefinitely thereafter
- A unit pulse is an input of unit amount occurring in duration ∆t and 0 elsewhere.

Precipitation is a series of pulse inputs!

Unit Hydrograph Theory

- Direct runoff hydrograph resulting from a unit depth of excess rainfall occurring uniformly on a watershed at a constant rate for a specified duration.
- Unit pulse response function of a linear hydrologic system
- Can be used to derive runoff from any excess rainfall on the watershed.

Unit hydrograph assumptions

- Assumptions
 - Excess rainfall has constant intensity during duration
 - Excess rainfall is uniformly distributed on watershed
 - Base time of runoff is constant
 - Ordinates of unit hydrograph are proportional to total runoff (linearity)
 - Unit hydrograph represents all characteristics of watershed (lumped parameter) and is time invariant (stationarity)

Discrete Convolution

Continuous
$$Q(t) = \int_{0}^{t} I(\tau)u(t-\tau)d\tau$$

Discrete
$$Q_n = \sum_{m=1}^{n \le M} P_m U_{n-m+1}$$

Q is flow, P is precipitation and U is unit hydrograph

M is the number of precipitation pulses, n is the number of flow rate intervals

The unit hydrograph has N-M+1 pulses

Application of convolution to the output from a linear system

Application of UH

- Once a UH is derived, it can be used/applied to find direct runoff and stream flow hydrograph from other storm events.
 Given: Ex. 7.5.1
- $P_1 = 2$ in, $P_2 = 3$ in and $P_3 = 1$ in, baseflow = 500 cfs and watershed area is 7.03 mi². Given the Unit Hydrograph below, determine the streamflow hydrograph

Unit hydr	rogra	ph							
n	1	2	3	4	5	6	7	8	9
U_n (cfs/in)	404	1079	2343	2506	1460	453	381	274	173

7.5.1 solution (cont'd)

Time (¹ / ₂ -h)	Excess Precipitation (in)	Unit hydrograph ordinates (cfs/in)										e
		1 404	2 1079	3 `2343	4 2506	5 1460	6 453	7 381	8 274	9 173	runoff (cfs)	(cfs)
n = 1	2.00	808									808	1308
े 2	3.00	1212	2158				ā.				3370	3870
3	1.00	404	3237	4686			-				8327	8827
4			1079	7029	5012						13,120	13,620
5				2343	7518	2920					12,781	13,281
6					2506	4380	906				7792	8292
7						1460	1359	762			3581	4081
8							453	1143	548		2144	2644
9								381	822	346	1549	2049
10									274	519	793	1293
11										173	173	673
										Total	54,438	

*Baseflow = 500 cfs.

See another example at: http://www.egr.msu.edu/~northco2/BE481/UHD.htm

Gauged and ungauged watersheds

- Gauged watersheds
 - Watersheds where data on precipitation, streamflow, and other variables are available
- Ungauged watersheds
 - Watersheds with no data on precipitation, streamflow and other variables.

Need for synthetic UH

- UH is applicable only for gauged watershed and for the point on the stream where data are measured
- For other locations on the stream in the same watershed or for nearby (ungauged) watersheds, synthetic procedures are used.

Synthetic UH

- Synthetic hydrographs are derived by
 - Relating hydrograph characteristics such as peak flow, base time etc. with watershed characteristics such as area and time of concentration.
 - Using dimensionless unit hydrograph
 - Based on watershed storage

SCS dimensionless hydrograph

- Synthetic UH in which the discharge is expressed by the ratio of q to q_p and time by the ratio of t to T_p
- If peak discharge and lag time are known, UH can be estimated.

T_c: time of concentration C = 2.08 (483.4 in English system)

A: drainage area in km² (mi²)

$$t_p \cong 0.6T_c$$
 $t_b \cong 2.67T_p$
 $T_p = \frac{t_r}{2} + t_p$ $q_p = \frac{CA}{T_p}$

Ex. 7.7.3

• Construct a 10-min SCS UH. A = 3.0 km² and $T_c = 1.25$ h

