
 

Ground Water Flow and 

Well Mechanics 



Steady One-Dimensional Flow 

For ground water flow in the x-direction in a 

confined aquifer, the governing equation becomes: 

    d2h/dx2 = 0 

 and has the solution 

    h = -vx/K + h0 

 where h = 0 and dh/dx = -v/K, according to 

Darcy’s law. 
 This states that head varies linearly with flow in 

the x-direction. 



Water Supply Wells 
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Steady Radial Flow to a Well-

Confined 
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Steady Radial Flow to a Well-

Confined 

In a confined aquifer, the drawdown curve or 

cone of depression varies with distance from 

a pumping well.  

For horizontal flow, Q at any radius r equals, 

from Darcy’s law, 
   Q = -2πrbK dh/dr 

      for steady radial flow to  

      a well where Q,b,K are const 



Steady Radial Flow to a Well-

Confined 
Integrating after separation of variables, with  

 h = hw at r = rw at the well, yields Thiem Eqn 

   Q = 2πKb[(h-hw)/(ln(r/rw ))]  

    

Note, h increases 

indefinitely with  

increasing r, yet 

the maximum head 

is h0. 

 



Steady Radial Flow to a Well-

Confined 

Near the well, transmissivity, T, may be 

estimated by observing heads h1 and h2 at 

two adjacent observation wells located at r1 

and r2, respectively, from the pumping well 

 

  T = Kb =  Q ln(r2 / r1) 

2π(h2 - h1) 



Steady Radial Flow to a Well-

Unconfined 



Steady Radial Flow to a Well-

Unconfined 

Using Dupuit’s assumptions and applying Darcy’s law for 
radial flow in an unconfined, homogeneous, isotropic, and 

horizontal aquifer yields: 

   Q = -2πKh dh/dr 

 integrating, 

   Q = πK[(h2
2 - h1

2)/ln(r2/ r1)  

 solving for K, 

   K = [Q/π(h2
2 - h1

2)]ln (r2/ r1)  

 where heads h1 and h2 are observed at adjacent wells 

located distances r1 and r2 from the pumping well 

respectively. 



Multiple-Well Systems 

For multiple wells with drawdowns that 
overlap, the principle of superposition may 
be used for governing flows: 

 

   drawdowns at any point in the area of 

            influence of several pumping wells is    

            equal to the sum of drawdowns from    

            each well in a confined aquifer 

 



Multiple-Well Systems 
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Multiple-Well Systems 

The same principle 

applies for well 

flow near a 

boundary 

Example:  

 pumping near a 

fixed head stream 



Multiple-Well Systems 

Another example: 

  well pumping near  

      an impermeable 

  boundary 



Multiple-Well Systems 

The previously mentioned principles also apply 

for well flow near a boundary 

Image wells placed on the other side of the 

boundary at a distance xw can be used to represent 

the equivalent hydraulic condition 

The use of image wells allows an aquifer of 

finite extent to be transformed into an infinite 

aquifer so that closed-form solution methods 

can be applied 



Multiple-Well Systems 

•A flow net for a pumping 

well and a recharging 

image well  

-indicates a line of 

constant head 

between the two wells 



Three-Wells Pumping  

A 

Total Drawdown at A is sum of drawdowns from each well 
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Multiple-Well Systems 

The steady-state drawdown 

s' at any point (x,y) is given 

by: 

s’ = (Q/4πT)ln 

 

where (±xw,yw) are the 

locations of the recharge and 

discharge wells. For this 

case, yw= 0. 

 

(x + xw)2 + (y - yw)2      

(x - xw)2 + (y - yw)2 



Multiple-Well Systems 

The steady-state drawdown s' at any point (x,y) is given by 

s’ = (Q/4πT)[ ln {(x + xw)2 + y2} – ln {(x – xw)2 + y2} ] 

where the positive term is for the pumping well and the 

negative term is for the injection well. In terms of head,  

h = (Q/4πT)[ ln {(x – xw)2 + y2} – ln {(x + xw)2 + y2 }] + H  

Where H is the background head value before pumping. 

Note how the signs reverse since s’ = H – h 

 



Unsteady Well Hydraulics  

The Theis Equation 

The governing ground water flow equation for h 

in plane polar coordinates is: 

    2h/ r2 + (1/r)(h/r) = (S/T)(h/t) 

   where: 

    r = radial distance from well 

    S = storage coefficient, and 

    T = transmissivity 

   RHS = transient term of storage 



The Theis Equation 

Theis obtained a solution to the governing equation by 
assuming that the well (pumping Q) is a sink of constant 
strength and by using boundary conditions: 

   h = h0 for t = 0 and, 

   h    h0 as r      for t  0 

   s' = (Q/4πT) e –u/u du     

   s' = (Q/4πT)W(u) Theis Eqn. 

     

   where s' = drawdown 

    Q = discharge at the well,   

    u = r2S/4Tt 

    W(u) = well function 

 

u 

 



The Theis Equation 

The integral in the Theis equation is written as W(u) 
and is known as the exponential integral, or well 
function, which can be expanded as infinite series: 

  

W(u) = – 0.5772 – ln(u) + u – u2/2·2! + u3/3·3! – u4/4·4! + … 

 

    The Theis equation can be used to obtain aquifer  

    constants S and T by means of pumping tests at  

    fully penetrating wells. 



The Theis Assumptions 

1. Aquifer is homogeneous, isotropic, 
uniformly thick, and of infinite extent 

2. Piezometric surface is horizontal initially 

3. Fully penetrating well with Q = C 

4. Flow horizontal within aquifer 

5. Neglect storage within well 

6. Water removed from storage responds 
instantaneously with declining head 

 



Theis Method - Graphical Soln 

Well Fcn 
Data Pts 

W(u) vs u  

s'  vs  r2/t  



The Theis Method 

s' = (Q/4πT)W(u) 

r2/t = (4T/S)u 

The relationship between 

W(u) and u must be the 

same as that between s' 

and r2/t because all other 

terms are constants. 

     - therefore, plotting: 

      W(u) vs. u, and  

       s' vs. r2/t  

W(u) vs u  

s'  vs  r2/t  



The Theis Method 

s' = (Q/4πT)W(u) 

r2/t = (4T/S)u 

For a known S and T, one can 

use Theis to compute s’ 
directly at a given r from the 

well as a function of time:  

First compute u = r2S / (4T t) 

Then W(u) from Table 3.2 

Finally s' = (Q/4πT)W(u) 

 



Cooper-Jacob Method of Solution 

Cooper and Jacob noted that for small values of r  

and large values of t, the parameter u = r2S/4Tt 

becomes very small so that the infinite series can be  

approx. by:  W(u) = – 0.5772 – ln(u) (neglect higher 
terms)  

     

  Thus s' = (Q/4πT) [– 0.5772 – ln(r2S/4Tt)] 

 

Further rearrangement and conversion to decimal logs yields: 

    s' = (2.3Q/4πT) log[(2.25Tt)/ (r2S)] 



Cooper-Jacob Method of Solution 

A plot of drawdown s' vs. 

log of t forms a straight line 

as seen in adjacent figure. 

A projection of the line back 

to s' = 0, where t = t0 yields 

the following relation: 

0 = (2.3Q/4πT) log[(2.25Tt0)/ (r
2S)] 

Semi-log plot 



Cooper-Jacob Method of Solution 



Cooper-Jacob Method of Solution 

So, since log(1) = 0, rearrangement yields 

   S = 2.25Tt0 /r
2 

Replacing s' by s', where s' is the drawdown  

difference per unit log cycle of t: 

   T = 2.3Q/4πs' 

The Cooper-Jacob method first solves for T and  

then for S and is only applicable for small values of 

  u < 0.01  



Cooper-Jacob Example 

For the data given in the Fig. 

t0 = 1.6 min and s’ = 0.65 m 

 Q = 0.2 m3/sec and r = 100 m 

Thus: 

T = 2.3Q/4πs’ = 5.63 x 10-2 m2/sec 

 T = 4864 m2/sec 

Finally, S = 2.25Tt0 /r
2  

 and   S = 1.22 x 10-3  

Indicating a confined aquifer 



Slug Tests 

Slug tests use a single well for the determination of 
aquifer formation constants 

Rather than pumping the well for a period of time, a 
volume of water is suddenly removed or added to the 
well casing and observations of recovery or 
drawdown are noted through time 

Slug tests are often preferred at hazardous waste 
sites, since no contaminated water has to be pumped 
out and then disposed. 



Hvorslev Piezometer Test 

Hvorslev used the recovery of 

water level over time to calculate 

hydraulic conductivity of the 

porous media 

This method relates the flow 

q(t) at the piezometer at any 

time to the hydraulic 

conductivity and the 

unrecovered head distance, 

H0 – h by: 

 

q(t) = πr2 dh/dt = FK(H0 – h)   (1) 



Hvorslev Piezometer Test 

In the equation, q(t) = πr2 dh/dt = FK(H0 – h)    (1) 

  F is a factor that depends on the shape and 
 dimensions of the piezometer intake 

   - if q = q0 at t = 0, then q(t) will decrease  
   toward zero as time increases 

   - Hvorslev defined the basic time lag as: 

    T0 = πr2/FK 

   and solved equation (1) with initial   
  conditions h = H0  at t = 0 

    Thus, 

    (H - h)/(H - H0) = e-t/T0  



Hvorslev Piezometer Test 

•  By plotting recovery (H-h)/(H-H0) 

vs. time on semi-log graph paper, we 

find that t = T0 where recovery 

equals 0.37 

•  For piezometer intake length 

divided by radius (L/R) greater than 

8, Hvorslev has evaluated the shape 

factor F and obtained an equation for 

K. 

      K = r2 ln(L/R) / 2LT0 



Other Slug Test Methods 

Other slug test methods have been developed by Cooper et 

al. (1967) and Papadopoulos et al. (1973) for confined 

aquifers that are similar to Theis's in that a curve-matching 

procedure is used to obtain S and T values for a given 

aquifer. 

However, the most common method for determining 

hydraulic conductivity is the Bouwer and Rice (1976) slug 

test.  This method may be used for unconfined aquifers and 

confined or stratified aquifers as long as the top of the 

screen is some distance below the upper confining layer. 



Bouwer and Rice Slug Test 

The Bouwer and Rice method is based on the 

following equation: 

    K = [rc
2 ln(Re/rw)] / (2Le)(1/t)ln(y0/yt) 

 where: 

rc = radius of casing 

y0 = vertical difference between 

water level inside well and water 

level outside at t = 0 

yt = vertical difference between 

water level inside well and water 

table outside (drawdown) at time t 

Re = effective radial distance over 

which y is dissipated, and varying 

with well geometry 

rw = radial distance of 

undisturbed portion of aquifer 

from centerline (usually 

thickness of gravel pack) 

Le = length of screened, 

perforated, or otherwise open 

section of well, and 

t = time 



An Example 

    A screened, cased well 
penetrates a confined aquifer. 
The casing radius is 5 cm and 
the screen is 1 m long. A gravel 
pack 2.5 cm wide surrounds the 
well and a slug of water is 
injected that raises the water 
level by 0.28 m. The change in 
water level with time is as 
listed in the following table. 
Given that Re is 10 cm, 
calculate K for the aquifer. 

  t (sec)            yt(m) 

        1                     0.24 

        2                     0.19 

        3                     0.16 

        4                     0.13 

        6                     0.07 

        9                     0.03 

      13                     0.013 

      19                     0.005 

      20                     0.002 

      40                     0.001 



The Solution 

Data for y vs. t are plotted 

on semi-log paper as 

shown. The straight line 

from y0 = 0.28 m to yt = 

0.001 m covers 2.4 log 

cycles. The time increment 

between the two points is 

24 seconds. To convert the 

log cycles to natural log, a 

factor of 2.3 is used. Thus, 

1/t ln(y0/yt) = 2.3 x 2.4/2.4 

= 0.23.  



The Solution 

Using this value (0.23) in the Bouwer and Rice 

equation gives: 

 

K = [(5 cm)2 ln(10 cm/7.5 cm)/(2 x 100 cm)](0.23 sec-1) 

and,  

    K = 8.27 x 10-3 cm/s 



Radial Flow in a Leaky Aquifer 

•  Leaky aquifers are complex 

because when they are 

pumped, water is withdrawn 

from both the lower aquifer 

and from the saturated portion 

of the overlying aquitard. 

•  By creating a lowered 

piezometric surface below the 

water table, ground water can 

migrate vertically downward 

and than move horizontally to 

the well    



Radial Flow in a Leaky Aquifer 

When pumping starts from a well in a leaky aquifer, 
drawdown of the piezometric surface can be given by: 

   s' = (Q/4πT)W(u,r/B) 
   where the quantity r/B is given by: 

    r/B = r/ T/(K' / b') 

    where: 

     T is transmissivity of the aquifer 

     K' is vertical hydraulic  
    conductivity                 
   b' is the thickness of the aquitard 

    



Radial Flow in a Leaky Aquifer 

Values of the function W(u, r/B) have been 

manipulated to create a family of type curves 



Radial Flow in a Leaky Aquifer 

This method of solution for the leaky aquifer is similar to 

the Theis method, except for W(u,r/B) 

  A curve of best fit is selected and values of W, 1/u, s', 

and t are found, which allows T and S to be determined. 

This makes it possible to calculate K' and b'. 

  Method is rarely used in practice since the 

assumptions are often violated in the field. 

  Better to use a numerical model (MODFLOW) that 

can handle variations more accurately.    



Florida: A Case Study 



Hydrogeology - Leaky Floridan Aquifer 


