


Steady One-Dimensional Flow

* For ground water flow 1n the x-direction in a
confined aquifer, the governing equation becomes:

d’h/dx? = 0
and has the solution
h=-vx/K + h,
where h = 0 and dh/dx = -v/K, according to

Darcy’s law.

This states that head varies linearly with flow 1n
the x-direction.




Water Supply Wells

As built
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Typical well designs for unconsolidated formations.
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Typical well designs for unconsolidated formations.




Steady Radial Flow to a Well-
connned
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Radial flow to a well penetrating an extensive confined aquifer.




Steatly Radial Flow to a Well-
Confined

* In a confined aquiter, the drawdown curve or
cone of depression varies with distance from
a pumping well.

* For horizontal flow, Q at any radius r equals,
from Darcy’s law,

Q =-2nrbK dh/dr
for steady radial flow to

a well where Q,b,K are const




steady Radial Flow to a Well-
Gonfined

3 Integratmg after separatlon of Varlables with
h=h,atr=r, atthe well, yields Thiem Eqn

O = 2nKb[(h-h,)/(In(r/r,,))]
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Radial flow to a well penetrating an extensive confined aquifer.




Steaty Radial Flow to a Well-
Confined

* Near the well, transmissivity, 7, may be
estimated by observing heads /, and A, at
two adjacent observation wells located at r,
and r,, respectively, from the pumping well

T=Kb= Qln(r,/r))
2n(h, - h;)




Steay Radial Flow to a Well-
Unconfined
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Radial flow to a well penetrating an unconfined aquifer.




steady Radial Flow to a Well-
llncontmetl

»* Using Dupuit’s assumptions and applying Darcy’s law for
radial flow in an unconfined, homogeneous, isotropic, and
horizontal aquifer yields:

Q =-2zKh dh/dr
integrating,

Q = nK[(hy’ - h?)/In(r,/r,)
solving for K,

K= [0/n(hy’ - h?)]ln (ry/1;)

where heads /; and &, are observed at adjacent wells
located distances r; and r, from the pumping well
respectively.




Multlnle-Well Svstems

% For multiple wells with drawdowns that
overlap, the principle of superposition may
be used for governing flows:

drawdowns at any point in the area of
influence of several pumping wells 1s
equal to the sum of drawdowns from
each well in a confined aquifer



Multmle-Well svstems
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Flow net for a discharging real well and a recharging image well. (After Ferris et al., 1962.)]




Multiple-Well Systems
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Sectional views. (1) Discharging well near a perennial stream.
(2) Equivalent hydraulic system in an aquifer of infinite areal extent.




Multiple-Well Systems
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(1) Discharging well near an impermeable boundary. (2) Equivalent
ydraulic system in an aquifer of infinite areal extent. (After Ferris et al., 1962.)]




Multmle-Well Svstems

% The previously mentioned principles also apply
for well flow near a boundary

* Image wells placed on the other side of the
boundary at a distance x,, can be used to represent
the equivalent hydraulic condition

+The use of image wells allows an aquifer of
finite extent to be transformed into an infinite
aquifer so that closed-form solution methods
can be applied
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Multmle-Well svstems
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discharge wells. For this
case, y,,= 0.




Multlnle-Well Svstems

The steady-state drawdown s' at any point (x,y) 1s given by

=(QM4xD[ In {(x +x,)? +y*} —In {(x - x,)* +y} |

where the positive term 1s for the pumping well and the
negative term 1s for the injection well. In terms of head,

h= QAT In {(x —x,)? +y)}—In {(x +x,)? + y*}] + H
Where H is the background head value before pumping.

Note how the signs reverse since s’=H — h




Unsteady Well Hydraulics
140 Thots Enmation

* The governing ground water flow equation for &
in plane polar coordinates 1s:

Fh/or? + (1/r)(h/dr) = (S/IT)(h/A)
where:
r = radial distance from well
S = storage coefficient, and
T = transmissivity

RHS = transient term of storage




The Thels Equation

3 Thels obtalned a solutlon to the govermng equatlon by
assuming that the well (pumping Q) is a sink of constant
strength and by using boundary conditions:

h =h,for ¢t =0 and,
h—h,as r —ow fort >0

= (0/4xT) ¥ e “/u du
= (0/4xT)W(u) Theis Eqn.

where s’ = drawdown
Q = discharge at the well,
u = r’S/4Tt
W(u) = well function




Tlle TIIEIS Ellllallﬂll

* The integral in the Theis equation 1s written as W(u)
and 1s known as the exponential integral, or well
function, which can be expanded as infinite series:

W) =—-0.5772 —Iln(u) + u —u?/2-2! + u3/3-3! —u/4-4! + ...

The Theis equation can be used to obtain aquifer
constants S and 7' by means of pumping tests at
fully penetrating wells.




TIIB TIIEIS ﬂSSllmlllIOIIS

1. Aqu1fer 1S homogeneous 1sotroplc
uniformly thick, and of infinite extent

Piezometric surface 1s horizontal initially
Fully penetrating well with Q = C

Flow horizontal within aquifer

Neglect storage within well

S b

Water removed from storage responds
instantaneously with declining head




Theis Method - Graphical Soin
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Theis method of superposition for solution of the nonequilibrium equation.




The Theis Method
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Theis method of superposition for solution of the nonequilibrium equation.

s' = (Q/A4nT)W(w)
2/t = (4T/S)u

The relationship between
W(u) and u must be the
same as that between s’
and r%/t because all other
terms are constants.

- therefore, plotting:
W(u) vs. u, and

s'vs. r’/t



The Thels Metllml

= (/4 T)W(w)
r’/t = (41/S)u

For a known S and T, one can
use Theis to compute s’
directly at a given r from the
well as a function of time:

First compute u =r’S/ (4T t)
Then W(u) from Table 3.2
Finally s' = (Q/4xT)W(u)




Cooper and Jacob noted that for small values of r
and large values of £, the parameter u = r>S/4Tt
becomes very small so that the infinite series can be

approx. by: W(u) =-0.5772 — In(u) (neglect higher
terms)

Thus s'=(0/M4nT) [-0.5772 —In(r?>S/4T¢)]

Further rearrangement and conversion to decimal logs yields:
= (2.30/4xT) log[(2.25TY)/ (¥*S)]
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log of ¢ forms a straight line |
as seen 1n adjacent figure. | =
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Figure 8.21
Cooper-Jacob method of analysis.

0 = (2.30/4nT) log[(2.25Tt,)/ (r’S)]
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Cooper-Jacob method of analysis.




So, since log(1) = 0, rearrangement yields
S =2.25Tt,/r?
Replacing s' by $s’, where $s'1s the drawdown
difference per unit log cycle of t:
T=230/M4n$s'
The Cooper-Jacob method first solves for 7" and

then for S and 1s only applicable for small values of
u<0.01




For the data given in the Fig.

2.0
t,=1.6minand ¥s’=0.65m | .|
0 =0.2 m’/sec and r = 100 m o
Thus: : o 4l
T=230/4r%s’=5.63x 102msec | ||
T = 4864 m*/sec o
Finally, S = 2.25Tt, /i ' | - -
and|S = 1.22 x 103

Indicating a confined aquifer




Slll!l TBSIS

% Slug tests use a single well for the determination of
aquifer formation constants

% Rather than pumping the well for a period of time, a
volume of water 1s suddenly removed or added to the
well casing and observations of recovery or
drawdown are noted through time

* Slug tests are often preferred at hazardous waste
sites, since no contaminated water has to be pumped
out and then disposed.




|'|\10I'S|G|l PIGZOIIIGIEI’ TBSI

% Hvorslev used the recovery of
water level over time to calculate

hydraulic conductivity of the o
porous media o
¢ This method relates the flow || .~ l 4

q(t) at the piezometer at any e
time to the hydraulic b TT
conductivity and the Hed E
unrecovered head distance, o N
HO ~ h by: Hvorslev piezomeler test. (a) Geomelry. (b) Method of analysis.

q(t) = nr? dh/dt = FK(H,—h) (1)




HVOIS'E\I Pleznmeter Test

# In the equation, q(?) = ar’ dh/dt = FK(H,— h) (1)

F 1s a factor that depends on the shape and
dimensions of the piezometer intake

-1f g = g, at t = 0, then g(¢) will decrease
toward zero as time increases

- Hvorslev defined the basic time lag as:

= ar’/FK

and solved equation (1) with initial
conditions h = H, att =0

Thus,
(H-h)/(H-H,) = e



|'|\10I'S|G|l PIGZOIIIGIEI’ TBSI

DDDDDD

1) Method of analysis.

* By plotting recovery (H-h)/(H-H,)
vs. time on semi-log graph paper, we
find that = 7, where recovery
equals 0.37

» For piezometer intake length
divided by radius (L/R) greater than
8, Hvorslev has evaluated the shape
factor F' and obtained an equation for
K.

K=r?In(L/R) / 2LT,




ﬂlllﬂr 3|II!I TESl MB“III(IS

* Other slug test methods have been developed by Cooper et
al. (1967) and Papadopoulos et al. (1973) for confined
aquifers that are similar to Theis's in that a curve-matching
procedure is used to obtain S and T values for a given
aquifer.

»* However, the most common method for determining
hydraulic conductivity 1s the Bouwer and Rice (1976) slug
test. This method may be used for unconfined aquifers and
confined or stratified aquifers as long as the top of the
screen 1s some distance below the upper confining layer.




BOIIWBI' aml HIBB S|ll!l TESI

* The Bouwer and Rice method 1s based on the

following equation:

K=[r2In(R/r,)]/ L)1/,

where:
r, = radius of casing

y, = vertical difference between
water level inside well and water
level outside at7 =0

y, = vertical difference between
water level inside well and water
table outside (drawdown) at time t

R, = effective radial distance over
which y is dissipated, and varying
with well geometry

r,, = radial distance of
undisturbed portion of aquifer
from centerline (usually
thickness of gravel pack)

L, = length of screened,
perforated, or otherwise open
section of well, and

t = time



A screened, cased well

penetrates a confined aquifer. t (sec) yt(r_n)
The casing radius 1s 5 ¢cm and i 0.24
the screen is 1 m long. A gravel 2 0.19
pack 2.5 cm wide surrounds the 3 0.16
well and a slug of water 1s 4 0.13
injected that raises the water 6 0.07
level by 0.28 m. The change in ) 0.03
water level with time is as 13 0.013
listed in the following table. 19 0.005
Given that R, is 10 cm, 20 0.002
calculate K for the aquifer. 40 0.001
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Data for y vs. t are plotted
on semi-log paper as
shown. The straight line
fromy,=028mtoy, =
0.001 m covers 2.4 log
cycles. The time increment
between the two points 1s
’ 24 seconds. To convert the
. log cycles to natural log, a
factor of 2.3 1s used. Thus,
o 1/t In(yyy,) = 2.3 x 2.4/2.4
= 0.23.
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Tllustration of the Bouwer and Rice slug test.




T_he_So_Iution_

Using this value (0.23) in the Bouwer and Rice
equation gives:

K=[(5cm)?In(10 cm/7.5 cm)/(2 x 100 cm)](0.23 sec™!)
| and,
K=8.27x 107 cm/s




Radial Flow in a Leaky Aquifer

Q Ground

Surface
/

Water table (Aquifer A)

SI
\ Piezometric surface (Aquifer B)

Unconfined aquifer A

Aquitard

Y

A

Leaky aquifer B

Well pumping from a leaky aquifer.

e Leaky aquifers are complex
because when they are
pumped, water 1s withdrawn
from both the lower aquifer
and from the saturated portion
of the overlying aquitard.

* By creating a lowered
piezometric surface below the
water table, ground water can
migrate vertically downward
and than move horizontally to
the well



nadlal Hnw |n a leakv Auulter

* When pumping starts from a well in a leaky aquifer,
drawdown of the piezometric surface can be given by:

s'=(0/4xT)W(u,r/B)
where the quantity /B is given by:
r/B=r/\[/(K'/b")

where:

T 1s transmissivity of the aquifer

K'1s vertical hydraulic
conductivity
b’ 1s the thickness of the aquitard




nadial I:IIIW ill a leakv Alllliier

Values of the functlon W(u, v/B ) have been
mampulated to create a family of type curves
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Figure 8.25
Type curves for analysis of pumping test data to evaluate storage coefficient
and transmissivity of leaky aquifers. (After Walton, 1960, Illinois State Water Survey.)




nadlal Hnw |n a leakv Auulter

% This method of solution for the leaky aquifer is similar to
the Theis method, except for W(u,r/B)

+ A curve of best fit 1s selected and values of W, 1/u, s,
and ¢ are found, which allows 7 and S to be determined.
This makes it possible to calculate K" and b'.

¢+ Method 1s rarely used in practice since the
assumptions are often violated in the field.

+ Better to use a numerical model (MODFLOW) that
can handle variations more accurately.




Florida: A Case Study
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Pinella;

Counties encompassed in NTB wrap area model. (SWFWMD,1996.)




Hydrogeoloyy - Leaky Floridan Aquifer
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Surface and ground water interactions. (SWFWMD, 1996.)




