# INTRODUCTION TO CONCRETE

Prepared by: MD TAHIR RAHMAN ASSISTANT PROFESSOR(CE)

### Concrete has deep roots in history: Wall at Palestrina, Italy, 1st Century BC



### Roman Aqueduct & Pantheon







The word "concrete" originates from the Latin verb "concretus", which means to grow together.

### Advantage of Concrete We have the ability to cast desired shapes

- Arches, piers, columns, shells
- Properties can be tailored according to need (strength, durability, etc.)
- Ability to resist high temperatures
  - Will maintain structural integrity far longer than structural steel
- Does not require protective coatings
- Can be an architectural & structural member at the same time

### Sculptural Qualities of Concrete at Chapel at Ronchamp (France)



### Concrete Structural Frame

### City of Arts and Sciences, Valencia, Spain



### **Properties of Quality Concrete**

- Workability
- Durability
- Strength
- Chloride Penetration Resistance
- Abrasion Resistance

## **The Nature of Concrete**

- □ It is a composite material
- Aggregates are 65% 80% of the volume
  - Fine aggregate: sand
  - Coarse aggregate: stone
- Cement: General term & applies to any binder
  - Portland cement
  - fly ash
  - ground slag
  - silica fume
- Water

## **Concrete Microstructure**



### The Purpose Of The Aggregates

- Large aggregates:
   provide density (fill space)
   provide strength
- Fine aggregates:
   fill small voids between large aggregates
   Increases strength of the could
  - Increases strength of the cer binder



## **The Cement Matrix**

# Cement: produces a crystalline structure binds aggregates together

### Water

causes chemical reaction to occur
water/cementitious "react"
produces workability



### What is Portland Cement?

Raw limestone, clay & gypsum minerals are ground into powder & heated in kiln (1600 ° C)

Minerals interact at that temperature to form calcium silicates (clinker)

Available in five types, each with varying performance characteristics and uses

## Portland Cement Manufacturing



### Clinker





- Portland cement becomes cementitious when mixed with water
- This reaction is referred to as hydration.
- During hydration, a crystalline structure grows to form bonds
- Hydration begins as soon as water meets cement
- Rate of hydration increases with increased cement fineness





Concrete does not gain strength by "drying out"

Concrete must have continuous free access to water to achieve its ultimate strength!!

## **Air Entrainment Admixtures**

### All concrete containes "entrapped" air

- Large bubbles
- Large voids are undesirable for durability & permeability

#### Entrained air

- Bubbles are microscopic in size & distributed through out concrete
- Increases durability by providing "escape route" for freezing water as it expands

## **ENTRAPPED AIR VOIDS**







### When Do We Use Air Entrained Concrete?

 Concrete to be placed in exterior locations requires air entraining (water/freeze/thaw)

## Water Reducers (Super-Plasticizers)

Water can be reduced

 Results in higher strength and more durable concrete due to reduced water