$$
\underset{\text { (AS PER ACI CODE) }}{\text { DESIGN OF BEAIMI }}
$$

CONTENT

- ASSUMPTIONS
- EVALUATION OF DESIGN PARAMETERS MOMENT FACTORS Kn, ω STRENGTH REDUCTION FACTOR ϕ BALANCED REINFORCEMENT RATIO ρ_{b}
- DESIGN PROCEDURE FOR SINGLY REINFORCED BEAM
CHECK FOR CRACK WIDTH
- DESIGN PROCEDURE FOR DOUBLY REINFORCED BEAM
- FLANGED BEAMS
- T-BEAMS
- L - BEAMS

ASSUMIPTIONS

r Plane sections before bending remain plane and perpendicular to the N.A. after bending

- Strain distribution is linear both in concrete \& steel and is directly proportional to the distance from N.A.
- Strain in the steel \& surrounding concrete is the same prior to cracking of concrete or yielding of steel
- Concrete in the tension zone is neglected in the flexural analysis \& design computation

- Concrete stress of $0.85 f f^{\prime}$ ' is uniformly distributed over an equivalent compressive zone.
$\mathrm{fc}^{\prime}=$ Specified compressive strength of concrete in psi.
r Maximum allowable strain of 0.003 is adopted as safe limiting value in concrete.
r. The tensile strain for the balanced section is fy/Es

■ Moment redistribution is limited to tensile strain of at least 0.0075

EVALUATION OF DESIGN PARAMETERS

- Total compressive force

$$
C=0.85 f f^{\prime} \text { ba } \quad \text { (Refer stress diagram) }
$$

г Total Tensile force

$$
\begin{aligned}
& T=A s f y \\
& C=T
\end{aligned}
$$

$0.85 f^{\prime}$ ' ba $=$ As fy

$$
a=\text { As fy } /\left(0.85 f c^{\prime} b\right)
$$

$$
=\rho d \text { fy } /(0.85 \mathrm{fc}) \quad \therefore \rho=\mathrm{As} / \mathrm{bd}
$$

г Moment of Resistance,

$$
\begin{aligned}
& M n=0.85 f c^{\prime} \text { ba }(d-a / 2) \quad \text { or } \\
& M n= A s \text { fy }(d-a / 2) \\
&= \rho \text { bd fy }\left[d-\left(\rho d f y b / 1.7 \mathrm{fc}^{\prime}\right)\right] \\
&= \omega \mathrm{fc}^{\prime}[1-0.59 \omega] \mathrm{bd}^{2} \\
& \quad \therefore \omega=\rho \mathrm{fy} / \mathrm{fc}^{\prime}
\end{aligned}
$$

$$
\mathrm{Mn}=\mathrm{Kn} \mathrm{bd}{ }^{2} \quad \therefore \mathrm{Kn}=\omega \mathrm{fc}^{\prime}[1-0.59 \omega]
$$

$$
M u=\phi M n
$$

$$
=\phi \mathrm{Kn} \mathrm{bd}{ }^{2}
$$

Γ Balaced Reinforcement Ratio $\left(\boldsymbol{\rho}_{\mathrm{b}}\right)$
From strain diagram, similar triangles

$$
\begin{aligned}
& c_{b} / d=0.003 /(0.003+\text { fy } / \text { Es }) \quad ; \text { Es }=29 \times 10^{6} \mathrm{psi} \\
& c_{b} / d=87,000 /(87,000+\text { fy })
\end{aligned}
$$

Relationship b/n the depth 'a' of the equivalent rectangular stress block \& depth ' c ' of the N.A. is

```
a= \beta, c
```

$$
\begin{array}{ll}
\beta_{1}=0.85 & ; \mathrm{fc}^{\prime} \leq 4000 \mathrm{psi} \\
\beta_{1}=0.85-0.05\left(\mathrm{fc}^{\prime}-4000\right) / 1000 & ; 4000<\mathrm{fc} \leq 8000 \\
\beta_{1}=0.65 & ; \mathrm{fc}^{\prime}>8000 \mathrm{psi}
\end{array}
$$

$$
\begin{aligned}
\rho_{\underline{b}} & =A_{\text {sb }} / b d \\
& =0.85 \mathrm{fc}^{\prime} a_{b} /(\mathrm{fy} \cdot \mathrm{~d}) \\
& =\beta_{1}\left(0.85 \mathrm{fc}^{\prime} / \mathrm{fy}\right)[87,000 /(87,000+f y)]
\end{aligned}
$$

r In case of statically determinate structure ductile failure is essential for proper moment redistribution. Hence, for beams the ACl code limits the max. amount of steel to 75% of that required for balanced section. For practical purposes, however the reinforcement ratio ($\rho=$ As / bd) should not normally exceed 50% to avoid congestion of reinforcement \& proper placing of concrete.

$$
\rho \leq 0.75 \rho_{b}
$$

■ Min. reinforcement is greater of the following:

$$
\begin{array}{lll}
A s_{\min }=3 \sqrt{f c^{\prime}} \times b_{w} d / f y & \text { or } & 200 b_{w} d / f y \\
\rho_{\min }=3 \sqrt{f c^{\prime}} / f y & \text { or } & 200 / f y
\end{array}
$$

- For statically determinate member, when the flange is in tension, the b_{w} is replaced with $2 b_{w}$ or bf whichever is smaller
- The above min steel requirement need not be applied, if at every section, Ast provided is at least $1 / 3$ greater than the analysis

DESIGN PROCEDURE FOR SINGLY REINFORCED BEAM

Determine the service loads
Assume 'h' as per the support conditions according to Table 9.5 (a) in the code

- Calculate $\mathrm{d}=\mathrm{h}$ - Effective cover
- Assume the value of ' b ' by the rule of thumb.
- Estimate self weight

Perform preliminary elastic analysis and derive B.M (M), Shear force (V) values

- Compute $\rho_{\text {min- }}$ and $\rho_{\underline{b}}$
- Choose ρ between $\rho_{\text {min_- }}$ and $\rho_{\underline{b}}$
- Calculate ω, Kn

From Kn \& M calculate 'd' required (Substitute b interms of d)

- Check the required 'd' with assumed 'd'
- Revise \& repeat the steps, if necessary

With the final values of ρ, b, d determine the Total As required Design the steel reinforcement arrangement with appropriate cover and spacing stipulated in code. Bar size and corresponding no. of bars based on the bar size \#n.
Check crack widths as per codal provisions

DESIGN PROCEDURE FOR DOUBLY RETNFORCED BEAM

Moment of resistance of the section
$M_{\mathrm{u}}=\mathrm{M}_{\mathrm{U} 1}+\mathrm{M}_{\mathrm{U} 2}$
$M_{U 1}=M . R$. of Singly reinforced section

$$
=\phi \mathrm{A}_{\mathrm{s} 1} \mathrm{fy}(\mathrm{~d}-\mathrm{a} / 2) \quad ; \quad \mathrm{A}_{\mathrm{s} 1}=\mathrm{M}_{\mathrm{u} 1} /[\phi \mathrm{fy}(\mathrm{~d}-\mathrm{a} / 2)]
$$

Mu2 $=\phi A_{\mathrm{s} 2} \mathrm{fy}\left(\mathrm{d}-\mathrm{d}^{\text {f }}\right) \quad ; \quad \mathrm{A}_{\mathrm{s} 2}=\mathrm{M}_{\mathrm{u} 2} /\left[\phi\right.$ fy $\left.\left(\mathrm{d}-\mathrm{d}^{\prime}\right)\right]$
$M u=\phi A_{s 1} f y(d-a / 2)+\phi A_{s 2} f y\left(d-d^{\prime}\right)$
If Compression steel yields,

$$
\begin{array}{ll}
& \varepsilon^{\prime} \geq \mathrm{fy} / \mathrm{Es} \\
\text { I.e., } & 0.003\left[1-\left(0.85 \mathrm{fc}^{\prime} \beta_{1} \mathrm{~d}^{\prime}\right) /\left(\left(\rho-\rho^{\prime}\right) \mathrm{fyd}\right)\right] \geq \mathrm{fy} / \mathrm{Es}
\end{array}
$$

If compression steel does not yield,

$$
\mathrm{fs}^{\prime}=\operatorname{Es} \times 0.003\left[1-\left(0.85 \mathrm{fc}^{\prime} \beta_{1} \mathrm{~d}^{\prime}\right) /\left(\left(\rho-\rho^{\prime}\right) \mathrm{fyd}\right)\right]
$$

Balanced section for doubly reinforced section is

$$
\rho_{\mathrm{b}}=\rho_{\mathrm{b} 1}+\rho^{\prime}(\mathrm{fs} / \mathrm{fy})
$$

$\rho_{b 1}=$ Balanced reinforcement ratio for S.R. section

DESIGN STRENGTH

$$
M u=\phi M n
$$

The design strength of a member refers to the nominal strength calculated in accordance with the requirements stipulated in the code multiplied by a Strength Reduction Factor ϕ, which is always less than 1.

r Why ϕ ?

- To allow for the probability of understrength members due to variation in material strengths and dimensions
- To allow for inaccuracies in the design equations
- To reflect the degree of ductility and required reliability of the member under the load effects being considered.
- To reflect the importance of the member in the structure

RECOMMENDED VALUE

Beams in Flexure....................... 0.90
Beams in Shear \& Torsion 0.85

AS PER TABLE 9.5 (a)

Simply Supported	One End Continuous	Both End Continuous	Cantilever
$\mathrm{L} / 16$	$\mathrm{~L} / 18.5$	$\mathrm{~L} / 21$	$\mathrm{~L} / 8$

Values given shall be used directly for members with normal weight concrete ($\mathrm{Wc}=145 \mathrm{lb/it} 3$) and Grade 60 reinforcement

For structural light weight concrete having unit wt. In range $90-120 \mathrm{lb/fit} 3$ the values shall be multiplied by
$(1.65-0.005 \mathrm{Wc})$ but not less than 1.09
For fy other than 60,000 psi the values shall be multiplied by (0.4 + fy/100,000)

- 'h' should be rounded to the nearest whole number
$\varangle B A C K$

CLEAR COVER

- Not less than 1.5 in . when there is no exposure to weather or contact with the ground
- For exposure to aggressive weather 2 in.
- Clear distance between parallel bars in a layer must not be less than the bar diameter or 1 in .

RULE OF THUMB

- $d / b=1.5$ to 2.0 for beam spans of 15 to 25 ft .
- $d / b=3.0$ to 4.0 for beam spans $>25 \mathrm{ft}$.
- 'b` is taken as an even number
- Larger the d / b, the more efficient is the section due to less deflection

\&BACK

BAR SIZE

- \#n = $\mathrm{n} / 8 \mathrm{in}$. diameter for $\mathrm{n} \leq 8$.

Ex. \#1 = $1 / 8 \mathrm{in}$.
\#8 = 8/8 i.e., l in.

Weight, Area and Perimeter of individual bars

BarNo	Wt.per Foot (Ib)	Stamdard Nominal Dimensions			
		Diameter d_{b}		C/S Area, $\mathrm{A}_{\mathrm{b}}\left(\mathrm{in}^{\mathbf{2}}\right)$	$\begin{array}{\|c\|} \hline \text { Perimeter } \\ \text { (in.) } \\ \hline \end{array}$
		inch	mm		
3	0.376	0.375	9	0.11	1.178
4	0.668	0.500	13	0.20	1.571
5	1.043	0.625	16	0.31	1.963
6	1.502	0.750	19	0.44	2.356
7	2.044	0.875	22	0.60	2.749
8	2.670	1.000	25	0.79	3.142
9	3.400	1.128	28	1.00	3.544
10	4.303	1.270	31	1.27	3.990
11	5.313	1.410	33	1.56	4.430
14	7.650	1.693	43	2.25	5.319
18	13.600	2.257	56	4.00	7.091

CRACK WIDTH

$\mathrm{w}=\quad 0.000091 . \mathrm{fs} .{ }^{3} \sqrt{ }(\mathrm{dc} . \mathrm{A})$
Where,

FLANGED BEAMS

EFFECTIVE OVERHANG, r

T-BEAM

1. $r \leq 8 \mathrm{hf}$
2. $r \leq 1 / 2 \ln$
3. $r \leq 1 / 4 \mathrm{~L}$

L - BEAM

1. $r \leq 6 \mathrm{hf}$
2. $r \leq 1 / 2 \ln$
3. $\quad \mathrm{r} \leq 1 / 12 \mathrm{~L}$

Case-1: Depth of N.A `c‘ < hf

$0.85 f^{\prime} \mathrm{b}$ a $=$ As fy
$\mathrm{a}=\mathrm{As}$ fy $/\left[0.85 \mathrm{fc}^{\prime} \mathrm{b}\right]$
Mn = As fy (d - a/2)

Case-2: Depth of N.A `c' > hf

2< hf

$0.85 f^{\prime} c^{\prime} \mathrm{b} a=$ As fy
a = As fy / [0.85fc' b]
Mn = As fy (d - a/2)

Case-2: Depth of N.A 'c' > hf

Part-1

Strain Diagram
Stress Diagram
$0.85 f^{\prime}{ }^{\prime}$ bw a $=A s_{1}$ fy

Part-2

$0.85 \mathrm{fc}^{\prime}(\mathrm{b}-\mathrm{bw}) \mathrm{hf}=\mathrm{As}_{2} \mathrm{fy}$
$0.85 f c^{\prime}$ bw a +
$0.85 \mathrm{fc}^{\prime}(\mathrm{b}-\mathrm{bw}) \mathrm{hf}=\mathrm{As}$ fy

$$
a=\left[A s ~ f y-0.85 f c^{\prime}(b-b w) h f\right] /\left[0.85 f c^{\prime} b w\right]
$$

Moment of resistance of the section

$$
\begin{aligned}
M_{n} & =M_{\mathrm{n} 1}+M_{\mathrm{n} 2} \\
M_{\mathrm{n} 1} & =A_{\mathrm{s} 1} f y(d-a / 2) \\
M_{\mathrm{n} 2} & =A_{\mathrm{s} 2} f y\left(d-h_{f} / 2\right)
\end{aligned}
$$

- Moment Redistribution

For continuous beam members,
Code permits Max of $\mathbf{2 0 \%}$
when et ≥ 0.0075 at that section

■ Balaced Reinforcement Ratio ($\boldsymbol{\rho}_{\mathrm{b}}$)

$$
\begin{aligned}
& \rho_{b}=(b w / b)\left[\rho_{\underline{b}}+\rho_{f}\right] \\
& \rho_{\underline{b}} \quad=A_{s b} / b_{w} d \\
& =0.85 f \mathrm{fc}^{\prime} \mathrm{a}_{\mathrm{b}} / \text { (fy. d) } \\
& =\beta_{1}(0.85 \mathrm{fc} / \mathrm{fy})[87,000 /(87,000+f y)] \\
& \rho_{\mathrm{f}} \quad=0.85 \mathrm{fc}^{\prime}(\mathrm{b}-\mathrm{bw}) \mathrm{hf} /(\mathrm{fy} \mathrm{bw} \mathrm{~d}) \\
& \rho \leq 0.75 \rho_{\mathrm{b}}
\end{aligned}
$$

- Min. reinforcement is greater of the following:

$$
\begin{aligned}
& \rho_{\mathrm{w}}=3 \sqrt{\mathrm{fc}^{\prime} / f y} \text { or } 200 / \mathrm{fy} \text {; for tve Reinf. } \\
& \rho_{\text {min }}=6 \sqrt{\mathrm{fc}^{\prime}} / \text { fy or } 200 / \mathrm{fy} \text {; for -ve Reinf. }
\end{aligned}
$$

THANK YOU

