CTC 450 Review

- Friction Loss
- Over a pipe length
- Darcy-Weisbach (Moody's diagram)
- Connections/fittings, etc.

Objectives

- Know how to set up a spreadsheet to solve a simple water distribution system using the Hardy-Cross method

Pipe Systems

- Water municipality systems consist of many junctions or nodes; many sources, and many outlets (loads)
- Object for designing a system is to deliver flow at some design pressure for the lowest cost
- Software makes the design of these systems easier than in the past; however, it's important to understand what the software is doing

Two parallel pipes

- If a pipe splits into two pipes how much flow will go into each pipe?
- Each pipe has a length, friction factor and diameter
- Head loss going through each pipe has to be equal

Two parallel pipes

$\mathrm{f}_{1}{ }^{*}\left(\mathrm{~L}_{1} / \mathrm{D}_{1}\right) *\left(\mathrm{~V}_{1} / 2 \mathrm{~g}\right)=\mathrm{f}_{2}{ }^{*}\left(\mathrm{~L}_{2} / \mathrm{D}_{2}\right) *\left(\mathrm{~V}_{2}^{2} / 2 \mathrm{~g}\right)$

Rearrange to:
$V_{1} / V_{2}=\left[\left(f_{2} / f_{1}\right)\left(L_{2} / L_{1}\right)\left(D_{1} / D_{2}\right)\right] .5$

This is one equation that relates v1 and v2; what is the other?

Hardy-Cross Method

Q's into a junction=Q's out of a junction

- Head loss between any 2 junctions must be the same no matter what path is taken (head loss around a loop must be zero)

Steps

1. Choose a positive direction ($\mathrm{CW}=+$)
2. \# all pipes or identify all nodes
3. Divide network into independent loops such that each branch is included in at least one loop

4. Calculate K^{\prime} for each pipe

- Calc. K' for each pipe
$\mathrm{K}^{\prime}=(0.0252) \mathrm{fL} / \mathrm{D}^{5}$
For simplicity f is usually assumed to be the same (typical value is .02) in all parts of the network

5. Assume flow rates and directions

- Requires assumptions the first time around

Must make sure that $\mathrm{Q}_{\text {in }}=\mathrm{Q}_{\text {out }}$ at each node

6. Calculate $\mathrm{Q}_{\mathrm{t}}-\mathrm{Q}_{\mathrm{a}}$ for each independent loop

- $\mathrm{Q}_{\mathrm{t}}-\mathrm{Q}_{\mathrm{a}}=-\sum \mathrm{K}^{\prime} \mathrm{Q}_{\mathrm{a}}{ }^{n} / n \sum\left|\mathrm{Q}_{\mathrm{a}}{ }^{\mathrm{n}-1}\right|$
- $\mathrm{n}=2$ (if Darcy-Weisbach is used)
- $\mathrm{Q}_{\mathrm{t}} \mathrm{Q}_{\mathrm{a}}=-\sum \mathrm{K}^{\prime} \mathrm{Q}_{\mathrm{a}}{ }^{2} / 2 \sum\left|\mathrm{Q}_{\mathrm{a}}{ }^{\mathrm{n}-1}\right|$
- Q_{t} is true flow
- Q_{a} is assumed flow
- Once the difference is zero, the problem is completed

7. Apply $\mathrm{Q}_{\mathrm{t}}-\mathrm{Q}_{\mathrm{a}}$ to each pipe

- Use sign convention of step one
- $\mathrm{Q}_{\mathrm{t}}-\mathrm{Q}_{\mathrm{a}}$ (which can be + or -) is added to CW flows and subtracted from CCW flows
- If a pipe is common to two loops, two $\mathrm{Q}_{\mathrm{t}}-\mathrm{Q}_{\mathrm{a}}$ corrections are added to the pipe

8. Return to step 6

- Iterate until $Q_{t}-Q_{a}=0$

Example Problem

- 2 loops; 6 pipes
- By hand; 1 iteration
- By spreadsheet

Calculate (1) in exec pipe of the network shown.

$$
\begin{aligned}
& 1, \quad c w=+\quad \frac{2 \text { loops }}{\text { Loup } A B D E} \\
& 2 / 3 \quad \text { Loop }_{B C D} \\
& 4 \quad k^{\prime}=\frac{(0.0252) f L}{D^{5}}
\end{aligned}
$$

$$
f \text { essumex to be } 0.02
$$

$$
\text { for }{ }^{2 l} \text { pipes }
$$

$$
\text { Pipe } A B \quad K^{\prime}=\frac{(0,0252)(0,02)(2500)}{(0,3333)^{5}}=306.2
$$

$$
\text { Pipe } B C \quad K^{\prime}=140,5
$$

$$
\begin{array}{ll}
D C & k^{\prime}=96.8 \\
B D & K^{\prime}=7.7
\end{array}
$$

$$
E D \quad k^{\prime}=57
$$

$$
A \equiv \quad k^{\prime}=367,4
$$

6. $\delta=\frac{-\sum K^{\prime} Q_{a}{ }^{2}}{2 \sum\left|K^{\prime} Q_{a}\right|}$

$\delta A B D E$

$$
\begin{aligned}
& \frac{-\left[(306.2)(0.7)^{2}+(7.7)(0.4)^{2}-(5.7)(0.3)^{2}-(36.7 .4)(0.8)^{2}\right]}{2[(306.2)(0.7)+(7.7)(0.4)+(5.7)(0.3)+(367.4)(0.8))]} \\
& \delta_{A B D E}=+0.08
\end{aligned}
$$

$\delta B C D$

$$
\begin{aligned}
& \frac{-\left[(140.5)(1.3)^{2}-(96.8)(0.7)^{2}-(7.7)(0.4)^{2}\right]}{2[(140.5)(0.3)+(96.8)(0.7)+(7.7)(0.4)]} \\
& \delta=+0.16
\end{aligned}
$$

7. Correcter flows
pips

$$
\begin{array}{ll}
C A B & 0.7+(0.08)=0.78 \\
B C & 0.3+(0.16)=0.46 \\
O C & 0.7-(0.16)=0.54 \\
B D & 0.4+(0.08)-(0.16)=0.32 \\
E D & 0.3-(0.08)=0.22 \\
A E & 0.8-(0.08)=0.72
\end{array}
$$

	Hardy-Cross Solution to example problem															
	2-loops	(6 pipes)														
					Lng (t)	Dia. (ft)										
AB	$\mathrm{K}^{\prime}=$	306		AB	2500	0.33										
BD	K'=	7.7		BC	3500	0.42										
DE	K'=	5.7		DC	6000	0.50										
EA	K'=	368		BD	2000	0.67										
BC	K'=	140		ED	1500	0.67			$f=$	0.02						
CD	K'=	97		AE	3000	0.33										
DB	$\mathrm{K}^{\prime}=$	7.7														
		Loop				Loop 2		Loop 1	Loop 2		Corrected	Loop 1		Corre	ted Loopr	
Iteration	Qa-b	Qb-d	Qd-e	Qe-a	Qb-c	Qc-d	Qdb	correction	correction	Qa-b	Qb-d	Qd-e	Qe-a	Qb-c	Qc-d	Qdb
1	0.70	0.40	0.30	0.80	0.30	0.70	0.40	0.08	0.16	0.78	0.32	0.22	0.72	0.46	0.54	0.32
2	0.78	0.32	0.22	0.72	0.46	0.54	0.32	0.00	-0.01	0.78	0.33	0.22	0.72	0.45	0.55	0.33
3	0.78	0.33	0.22	0.72	0.45	0.55	0.33	0.00	0.00	0.78	0.33	0.22	0.72	0.45	0.55	0.33
4	0.78	0.33	0.22	0.72	0.45	0.55	0.33	0.00	0.00	0.78	0.33	0.22	0.72	0.45	0.55	0.33
																16

