CTC 450 Review

Friction Loss

- Over a pipe length
 - Darcy-Weisbach (Moody's diagram)
- Connections/fittings, etc.

Objectives

Know how to set up a spreadsheet to solve a simple water distribution system using the Hardy-Cross method

Pipe Systems

- Water municipality systems consist of many junctions or nodes; many sources, and many outlets (loads)
- Object for designing a system is to deliver flow at some design pressure for the lowest cost
- Software makes the design of these systems easier than in the past; however, it's important to understand what the software is doing

Two parallel pipes

- If a pipe splits into two pipes how much flow will go into each pipe?
- Each pipe has a length, friction factor and diameter
- Head loss going through each pipe has to be equal

Two parallel pipes

$f_1^*(L_1/D_1)^*(V_1^2/2g) = f_2^*(L_2/D_2)^*(V_2^2/2g)$

Rearrange to: $V_1/V_2 = [(f_2/f_1)(L_2/L_1)(D_1/D_2)]^{.5}$

This is one equation that relates v1 and v2; what is the other?

Hardy-Cross Method

- Q's into a junction=Q's out of a junction
- Head loss between any 2 junctions must be the same no matter what path is taken (head loss around a loop must be zero)

Steps

- 1. Choose a positive direction (CW=+)
- 2. # all pipes or identify all nodes
- Divide network into independent loops such that each branch is included in at least one loop

4. Calculate K' for each pipe

- Calc. K' for each pipe
 K'=(0.0252)fL/D⁵
- For simplicity f is usually assumed to be the same (typical value is .02) in all parts of the network

5. Assume flow rates and directions

- Requires assumptions the first time around
- Must make sure that Q_{in}=Q_{out} at each node

6. Calculate Q_t-Q_a for each independent loop

- $Q_t Q_a = -\sum K' Q_a^n / n \sum |Q_a^{n-1}|$
- n=2 (if Darcy-Weisbach is used)
- $\mathbf{Q}_{t} \mathbf{Q}_{a} = -\sum \mathbf{K}' \mathbf{Q}_{a}^{2} / 2 \sum |\mathbf{Q}_{a}^{n-1}|$
- Q_t is true flow
- Q_a is assumed flow
- Once the difference is zero, the problem is completed

7. Apply Q_t-Q_a to each pipe

- Use sign convention of step one
- Q_t-Q_a (which can be + or -) is added to CW flows and subtracted from CCW flows
- If a pipe is common to two loops, two Q_t-Q_a corrections are added to the pipe

8. Return to step 6

• Iterate until $Q_t - Q_a = 0$

Example Problem

- 2 loops; 6 pipes
 - By hand; 1 iteration
 - By spreadsheet

Calculate @ in each pipe of the netwirk shown.

14

 $\delta = \frac{-\Sigma k' Q_a^2}{2\Sigma / k' Q_a}$ 6. SABDE $-\left[(306.2)(0.7)^{2}+(7.7)(0.4)^{2}-(5.7)(0.3)^{2}-(367.4)(0.8)^{2}\right]$ $2\left[(306,2)(0,7)+(7,7)(0,4)+(5,7)(0,3)+(367,4)(0,8)\right]\right]$ +0.08 8 BCD $- \sum (140.5)(1.3)^2 - (96.8)(0.7)^2 - (7.7)(0.4)^2]$ 2 [(140.5)(0,3) + (96.8)(0,7) + (7.7)(0,4)] 8 = + 0.16 Corrected flows pipe AB BC 0.7 + (0.08) = 0.780.3 + (0.16) = 0.46DC 0,7 - (0.16) = 0,54 +(0.08)-(0.16)=0.320.4 BD (0.08) = 0.220.3 0,8-(0.08)= 0.72

	Hardy-C	Cross	Solutio	on to ex	ample	problem										
	2-loops	(6 pipe	s)													
					_ng (ft)											
AB	K'=	306		AB	2500	0.33										
BD		7.7		BC	3500	0.42										
DE	K'=	5.7		DC	6000	0.50										
EA	K'=	368		BD	2000	0.67										
BC		140		ED	1500	0.67			f=	0.02						
CD		97		AE	3000	0.33										
DB	K'=	7.7														
li e me ti e m																
								1 4			0					
	Loop 1 Qa-b Qb-d Qd-e G			0	Loop 2			Loop 1	Loop 2				Corrected Loop 2			
Iteration					Qb-c	Qc-d			correction	Qa-b	Qb-d	Qd-e	Qe-a	Qb-c	Qc-d	Q
1	_	0.40	0.30	0.80	0.30	0.70	0.40	0.08		0.78	0.32	0.22	0.72	0.46	0.54	0.3
2		0.32		0.72 0.72	0.46 0.45	0.54 0.55	0.32	0.00		0.78 0.78	0.33	0.22	0.72 0.72	0.45	0.55 0.55	0.3
3 4		0.33		0.72	0.45	0.55	0.33	0.00		0.78	0.33	0.22	0.72	0.45 0.45	0.55	0.3
4	0.70	0.33	0.22	0.72	0.45	0.55	0.33	0.00	0.00	0.70	0.33	0.22	0.72	0.45	0.55	0.3
																-16