Clay Mineralogy

- Clay is a particle SIZE
- Predominant make-up is SECONDARY minerals

Minerals can be crystalline or amorphous.

Example: SiO₂ crystalline QUARTZ (SiO₂): resistant to weathering

Amorphous silica (SiO₂): 10x more soluble

1. Silicate Clays (crystalline)

2. Sesquioxide/oxidic clays

3. Amorphous clays (non-crystalline)

1. Silicate Clays (aluminosilicates)

Micelle: particle of silicate clay

Composed of tetrahedral and octahedral "sandwiches"

Tetrahedron: central cation (Si⁺⁴, Al⁺³) surrounded by 4 oxygens

Octahedron: central cation (Al⁺³,Fe⁺², Mg⁺²) surrounded by 6 oxygens (or hydroxyls)

tetrahedron

octahedron

Tetrahedral sheets

Connected tetrahedra, sharing oxygens

Octahedral sheets

Connected octahedra, sharing oxygens or hydroxyls

- 1000s of tetrahedra and octahedra connect in clay minerals to give:
 - Planes of Si, Al, Mg
 - Planes of Oxygen, hydroxyl groups
- Sheets combine to form layers
- Layers are separated by interlayer space
 Water, adsorbed cations

Isomorphous substitution

Lower charge cations replace higher charge cations as central cation - E.g., Mg⁺² replaces Al⁺³

leaves net negative charge

Different types of silicate clays are composed of sandwiches (combinations) of layers with various substances in their interlayer space.

2:1 two tetrahedral sheets to one octahedral sheet
1:1 one tetrahedron sheet to one octahedral sheet

a. Kaolinite

√1:1 Hydrogen bonds in interlayer space √ strong Nonexpandable ✓ Low CEC ✓ Particles can grow very large (0.2 - 2 $\mu m)$ \checkmark Effective surface area = 10 - 30 m²/g ✓External surface only

kaolinite

kaolinite

Kaolinite

- ✓ good road base
- ✓ good foundation
- ✓ good for pottery; China clay (porcelain)

- easy to cultivate, but need manure or fertilizer
- Dominant clay mineral in highly weathered soils

Kaolin mine, Bulgaria

Kaolinite mine, MN (MN River Valley)

<u>Click here, Pat</u>

kaolinite

Kaolinite

Illite-smectite

4FM

20KU

17

026

S

b. Smectite

✓ 2:1

- Weathering product
- Always negative due to isomorphous substitution
- Layers weakly held together by weak O-O bonds or cation-O bonds
- Cations adsorbed in interlayer space
- ✓ Expandable
- ✓ High CEC

smectite

Interlayer cations hold layers together
 In dry soils, bonding force is strong and hard clods form; deep cracks

In wet soils, water is drawn into interlayer space and clay swells.

✓ Montmorillonite

✓ Vertisols

Dominant clay mineral of most MN soils

smectite

✓ High effective surface area = 650 - 800 m²/g
 ✓ Internal surface area >> external

Particles small

Most expandable of all clays

c. Fine-grained micas

✓ 2:1 As mica crystallizes from magma: ✓ Isomorphous substitution of Al⁺³ for Si⁺⁴ in tetrahedra high net negative charge ✓ K⁺ ions in interlayer space Strongly binds layers ✓ Non-expandable ✓ Illite ✓ Surface area 70 -175 m²/g

d. Vermiculite

- **√**2:1
- Forms from alteration of mica
 Weathering removes some K+ ions
 Replaced by hydrated cations in interlayer space
- Water molecules and cations bridge layers, so not as expandable as smectites

Still have very high net negative charge
 High CEC (highest of all clays)
 Expandable
 Octahedral ions are Al, Mg, Fe
 Surface area 600 - 800 m²/g
 Internal >> external

e. Chlorite

√2:1

Central cations in octahedral sheets is
 Fe or Mg

 Interlayer space occupied by a stable, positively charged octahedral sheet

✓Non-expandable

 $\sqrt{70}$ -100 m²/g surface area

<u>Click here</u>

2. Sesquioxides / Oxidic Clays

 Ultimate weathering products ✓ Ultisols and Oxisols Very stable; persist indefinitely ✓ Yellow, red, brown ✓ Fe or Al as central cations Lack negative charge ✓ Don't retain adsorbed cations ✓ Non-expandable V Low CEC

Low fertility

- ✓ Often are net positive
- Often have enough Al or Mn to be toxic to plants
- High capacity to fix phosphorous so it is not available to plants
- Highly weathered so no more nutrients to release in weathering

Ultisol profile

In heavily leached soils, sheets decompose into component Si tet. and Al oct.

 \checkmark Al oct. often weather into gibbsite Al(OH)₃

3. Amorphous (non-crystalline)

✓ silicates

Allophane and imogolite ✓ Common in volcanic ash High internal negative charge ✓ High CEC High water-holding capacity ✓ Surface area 100 - 1000 m²/g

Plasticity and Stickiness

	plasticity	stickiness
kaolinite	Low	Low
smectite	High	High
mica	Low	Low
vermiculite	High	High
chlorite	Low	Low
amorphous	High	Low
oxidic	Low	Low

"Activity" of silicate clays

- refers to cation exchange capacity (CEC)
 - Ability to retain and supply nutrients
 - Fertility
- High activity clays:
 - Less weathered ; high effective surface area
 - smectite, vermiculite, mica (illite), chlorite
- Low activity clays:
 - More weathered; less effective surface area
 - kaolinite

Family description in taxonomy includes clay activity

- Example:
- "Fine-loamy, mixed, superactive, frigid Typic Hapludalfs"

What determines clay minerals in a given soil?

Usually a mixture
Climate
Parent material
Degree of weathering

Generalized relationships:

Ultisols	Kaolinite, oxidic clays	
Oxisols		
Alfisols	Mica, vermiculite,	
Mollisols	SMECTITE	
Vertisols		
Andisols	Amorphous	