# Permeability



## What is **permeability**?

- Property of a soil which permits the flow of water
- Permeability is defined as the property of a porous material which permits the passage or seepage of water through its interconnecting voids.
- It is a very important Engineering property









# Permeability through soil is important for the following engineering problems:

- **Calculation** of uplift pressure under hydraulic structure and their safety against **piping**
- Ground water flow towards wells and drainage of soil
- Calculation of seepage through the body of earth dams and **stability** of slopes
- Determination of rate of **settlement** of a saturated compressible soil layer

# Flow of water through soils may either be a laminar flow or a turbulent flow

Each fluid particle travel along a definite path which never crosses the path of any other particle



Paths are irregular and twisting, crossing at random



## Coefficient Of Permeability

Depends not only on the properties of soil but also on the properties of water

## Absolute permeability

- Independent of the properties of water
- It depends only on the characteristics of soil
- The absolute permeability only depends on the geometry of the pore-channel system.

**Relative permeability** is the ratio of effective permeability of a particular fluid to its absolute permeability.



*Henry Darcy* (1803-1858), Hydraulic Engineer. His law is a foundation stone for several fields of study

**Darcy's Law** who demonstrated experimentally that for laminar flow conditions in a saturated soil, the rate of flow or the discharge per unit time is proportional to the hydraulic gradient

$$q = vA$$
$$v = ki$$
$$q = kiA$$

Validity of darcy's law - When flow is laminar

### Bernouli's Equation:

- Total Energy = Elevation Energy + Pressure Energy + Velocity Energy
- Total Head = Elevation Head + Pressure Head + Velocity Head 2 P $H = z + \frac{V}{2g} + \frac{p}{\rho g}$
- Total head of water in soil engineering problems is equal to the sum of the elevation head and the pressure head



## **Factors Affecting Permeability**



- Particle size
- Structure of soil mass
- Shape of particles
- Void ratio
- Properties of water
- Degree of saturation
- Adsorbed water
- Impurities in water





## Constant Head Permeability Test

- Quantity of water that flows under a given hydraulic gradient through a soil sample of known length & cross sectional area in a given time
- Water is allowed to flow through the cylindrical sample of soil under a constant head
- For testing of pervious, coarse grained soils

$$k = \frac{QL}{Aht}$$

- K = Coefficient of permeability
- Q = total quantity of water
- t = time
- L = Length of the coarse soil



## Variable head permeability test

- Relatively for less permeable soils
- Water flows through the sample from a standpipe attached to the top of the cylinder.
- The head of water (h) changes with time as flow occurs through the soil. At different times the head of water is recorded.

$$k = \frac{2.30aL}{At} \log_{10} \frac{h_1}{h_2}$$

t = time

- L = Length of the fine soil
- A = cross section area of soil
- a= cross section area of tube
- K = Coefficient of permeability

#### By Indirect Method

Allen hazen's formula

$$k = c D_{10}^{2}$$

**Kozeny carman equation** 

$$k = \frac{g\rho_w}{(C_s\mu S^2)T^2} \frac{e^3}{1+e}$$

### Loudon's formula

$$\log_{10}(kS^2) = a + bn$$

### **Consolidation test data**

$$k = C_{v} \gamma_{w} m_{v}$$

constants.,a= 1.365 b=5.15 c=value b/w 100 & 150 T= Tortuosity S = surface area

#### Flow parallel to the plans of stratification



#### Flow normal to the plans of stratification

$$k_y = \frac{H}{\frac{H_1}{k_1} + \frac{H_2}{k_2} + \dots + \frac{H_n}{k_n}}$$