- **1.** What is a plastic hinge?
- **2.** What is a mechanism?
- 3. What is difference between plastic hinge and mechanical hinge?
- **4.** Define collapse load.
- 5. List out the assumptions made for plastic analysis.
- 6. Define shape factor.
- 7. List out the shape factors for the following sections.
  - a) Rectangular section,
  - b) Triangular section,
  - c) Circular section,
  - d) Diamond section
- 8. Mention the section having maximum shape factor.
- 9. Define load factor.
- 10.State upper bound theory.
- **11.**State lower bound theory.
- 12. What are the different types of mechanisms?
- **13.**Mention the types of frames.
- 14.What are symmetric frames and how they analyzed?
- 15.What are unsymmetrical frames and how are they analyzed?
- **16.**Define plastic modulus of a section Zp.
- **17.**How is the shape factor of a hollow circular section related to the shape factor of an ordinary circular section?
- 18. Give the governing equation for bending.
- 19. Give the theorems for determining the collapse load.
- **20.**State plastic moment of resistance.
- **21.**Explain pure bending with its assumptions.
- 22. Determine the beam capacity of beam shown the figure



**23.**Determine the minimum plastic moment capacity to prevent collapse of frame



- **24.** Calculate the shape factor for a **(a)** rectangle section of breadth b and depth d
  - (b) Diamond section of breadth b and depth d.
- 25.Calculate the shape factor for a triangle a) centroid lying at d/3 from the base of depth d and breadth b.b) Circular section of dia D.
- **26.**A mild steel I-section 200mm wide and 250mm deep has a mean flange thickness of 20mm and a web thickness of 10mm.Calculate the S.F. Find the fully plastic moment if  $\sigma_y=252N/mm^2$ .
- **27.**Find the shape factor of the I-section with top flange 100mm wide, bottom flange 150mm wide,20mm and web depth 150mm and web thickness 20mm.
- **28.**Find the shape factor of the T-section of depth 100mm and width of flange 100mm, flange thickness and web thickness 10mm.
- **29.**A continuous beam ABC is loaded as shown .Determine the required Mp if the load factor is 3.2.





- **30.**A two span continuous beam ABC has span length AB=6m and BC=6m and carries an udl of 30 kN/m completely covering the spans AB and BC.A and C are simple supports. If the load factor is 1.8 and the shape factor is 1.15 for the I-section, find the section modulus, assume yield stress for the material as 250N/mm<sup>2</sup>.
- **31.**Determine the collapse load for the frame shown in the diagram, Mp is the same for all members.



**32.** Find the collapse load for the portal frame loaded as shown.



**33.**Find the collapse load for the loaded frame loaded as shown.



**34.**Find the value of W at collapse for the portal frame loaded as shown in



**35.**Find the value of W at collapse for the portal frame loaded as shown in Figure 15(a). All the members have the same plastic moment of resistance



- **36.**A beam of span 6rn is to be designed for an ultimate u.d.l of 25 kN/m. The beam is simply supported at the ends. Design a suitable I section using plastic theory assuming  $f_y 250 \text{ N/mm}^2$ .
- **37.** Derive the shape factor for Rectangle, Diamond and Circular Sections.

**38.**For the beam, determine the design plastic moment capacity.



**39.**A beam of span 6 m is to be designed for an ultimate UDL of 25 kN/m. The beam is simply supported at the ends. Design a suitable I section using plastic theory, assuming  $\sigma_y$ = 250 MPa.



**40.** A portal frame is loaded up to collapse. Find the plastic moment capacity required if the frame is of uniform section throughout.



**41.**For the cantilever, determine the collapse load



**42.**A beam of rectangular section b x d is subjected to a bending moment of 0.9 Mp. Find out the depth of elastic core.