Structural Analysis - II

Indeterminate structures; Force method of analysis

Module I

Statically and kinematically indeterminate structures

- Degree of static indeterminacy, Degree of kinematic indeterminacy, Force and displacement method of analysis

Force method of analysis

- Method of consistent deformation-Analysis of fixed and continuous beams
- Clapeyron's theorem of three moments-Analysis of fixed and continuous beams
- Principle of minimum strain energy-Castigliano's second theoremAnalysis of beams, plane trusses and plane frames.

Tvpes of Framed Structures

-a. Beams: may support bending moment, shear force and axial force

(b)
-b. Plane trusses: hinge joints; In addition to axial forces, a member CAN have bending moments and shear forces if it has loads directly acting on them, in addition to joint loads

- c. Space trusses: hinge joints; any couple acting on a member should have moment vector perpendicular to the axis of the member, since a truss member is incapable of supporting a twisting moment

(c)

(d)
-d. Plane frames: Joints are rigid; all forces in the plane of the frame, all couples normal to the plane of the frame
-e. Grids: all forces normal to the plane of the grid, all couples in the plane of the grid (includes bending and torsion)

-f. Space frames: most general framed structure; may support bending moment, shear force, axial force and torsion

Deformations in Framed Structures

Three forces: $\quad N_{x}, V_{y}, V_{z}$
Three couples: T_{x}, M_{y}, M_{z}

- Cionificant dofromatinnc in framod ctrinstirac

Structure	Significant deformations
Beams	flexural
Plane trusses	axial
Space trusses	axial
Plane frames	flexural and axial
Grids	flexural and torsional
Space frames	axial, flexural and torsional

(c)

(d)

(e)

Types of deformations in framed structures
b) axial c) shearing d) flexural e) torsional

Equilibrium

- Resultant of all actions (a force, a couple or both) must vanish for static equilibrium
- Resultant force vector must be zero; resultant moment vector must be zero

$$
\begin{array}{lll}
\sum F_{x}=0 & \sum F_{y}=0 & \sum F_{z}=0 \\
\sum M_{x}=0 & \sum M_{y}=0 & \sum M_{z}=0
\end{array}
$$

- For 2-dimensional problems (forces are in one plane and couples have vectors normal to the plane),

$$
\sum F_{x}=0 \quad \sum F_{y}=0 \quad \sum M_{z}=0
$$

Compatibility

- Compatibility conditions: Conditions of continuity of displacements throughout the structure
- Eg: at a rigid connection between two members, the displacements (translations and rotations) of both members must be the same

Indeterminate Structures

Force method and Displacement method

- Force method (Flexibility method)
- Actions are the primary unknowns
- Static indeterminacy: excess of unknown actions than the available number of equations of static equilibrium
- Displacement method (Stiffness method)
- Displacements of the joints are the primary unknowns
- Kinematic indeterminacy: number of independent translations and rotations

Static indeterminacy

- Beam:
-Static indeterminacy $=$ Reaction components - number of eqns available $E=R-3$
- Examples:
- Single span beam with both ends hinged with inclined loads
- Continuous beam
- Propped cantilever
- Fixed beam

- Rigid frame (Plane):

- External indeterminacy $=$ Reaction components - number of eqns available

$$
E=R-3
$$

- Internal indeterminacy $=3 \times$ closed frames $\quad I=3 a$
- Total indeterminacy $=$ External indeterminacy + Internal indeterminacy

$$
T=E+I=(R-3)+3 a
$$

- Note: An internal hinge will provide an additional eqn

Example 1

$$
\begin{aligned}
T & =E+I=(R-3)+3 a \\
& =(2 \times 2-3)+3 \times 0=1
\end{aligned}
$$

Example 3

$$
T=E+I=(R-3)+3 a
$$

$$
=(3 \times 2-3)+3 \times 3=12
$$

Example 2

$$
\begin{aligned}
T & =E+I=(R-3)+3 a \\
& =(3 \times 3-3)+3 \times 2=12
\end{aligned}
$$

$$
\begin{aligned}
T & =E+I=(R-3)+3 a \\
& =(4 \times 3-3)+3 \times 4=21
\end{aligned}
$$

- Rigid frame (Space):

- External indeterminacy $=$ Reaction components - number of eqns available

$$
E=R-6
$$

- Internal indeterminacy $=6 \times$ closed frames

Example 1

$$
\begin{aligned}
T & =E+I=(R-6)+6 a \\
& =(4 \times 6-6)+6 \times 1=24
\end{aligned}
$$

If axial deformations are neglected, static indeterminacy is not affected since the same number of actions still exist in the structure

- Plane truss (general):

- External indeterminacy $=$ Reaction components - number of eqns available

$$
E=R-3
$$

- Minimum 3 members and 3 joints.
- Any additional joint requires 2 additional members.
- Hence, number of members for stability, $m=3+2(j-3)=2 j-3$
- Hence, internal indeterminacy, $I=m-(2 j-3)$
- Total (Internal and external) indeterminacy

$$
\begin{aligned}
T & =E+I=R-3+m-(2 j-3) \\
& =m+R-2 j
\end{aligned}
$$

- m : number of members
- R : number of reaction components
- j : number of joints
- Note: Internal hinge will proyide additional eqn

Example 1

$$
\begin{aligned}
& T=m+R-2 j=9+3-2 \times 6=0 \\
& E=R-3=3-3=0 \\
& I=T-E=0
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& T=m+R-2 j=15+4-2 \times 8=3 \\
& E=R-3=4-3=1 \\
& I=T-E=2
\end{aligned}
$$

Example $3 T=m+R-2 j=6+4-2 \times 5=0$

$$
\begin{aligned}
& E=R-(3+1)=4-4=0 \quad \text { Hinge at A } \\
& I=T-E=0
\end{aligned}
$$

Fvamnlo $4 \quad T=m+R-2 j=7+3-2 \times 5=0$

$$
\begin{aligned}
& E=R-3=3-3=0 \\
& I=T-E=0
\end{aligned}
$$

Example $5 \quad T=m+R-2 j=6+4-2 \times 4=2$
$E=R-3=4-3=1$

$$
I=T-E=1
$$

Example 6

$$
\begin{aligned}
& T=m+R-2 j=11+3-2 \times 6=2 \\
& E=R-3=3-3=0
\end{aligned}
$$

$$
I=T-E=2
$$

- Wall or ronf attached nin ininted nlane trucs (Excention to the above general case):
- Internal indeterminacy $\quad I=m-2 j$
- External indeterminacy $=0$ (Since, once the member forces are determined, reactions are determinable)

Framnlo 1

$T=I=m-2 j$
$=6-2 \times 3=0$

Example 2

$$
\begin{aligned}
& T=I=m-2 j \\
& =7-2 \times 3=1
\end{aligned}
$$

Fvamnle 2

$$
T=I=m-2 j
$$

$$
=5-2 \times 1=3
$$

- Space Truss:
-External indeterminacy $=$ Reaction components - number of eqns available

$$
E=R-6
$$

- Minimum 6 members and 4 joints.
- Any additional joint requires 3 additional members.
- Hence, number of members for stability, $m=6+3(j-4)=3 j-6$
- Hence, internal indeterminacy, $I=m-(3 j-6)$
- Total (Internal and external) indeterminacy

$$
\begin{aligned}
T & =E+I=R-6+m-(3 j-6) \\
& =m+R-3 j
\end{aligned}
$$

Example

- Total (Internal and external) indeterminacy $T=m+R-3 j$

$$
\begin{aligned}
\therefore T & =12+9-3 \times 6=3 \\
E & =R-6=9-6=3
\end{aligned}
$$

Kinematic indeterminacy

- joints: where members meet, supports, free ends
- joints undergo translations or rotations
-in some cases joint displacements will be known, from the restraint conditions
-the unknown joint displacements are the kinematically indeterminate quantities
odegree of kinematic indeterminacy: number of degrees of freedom

Two types of DOF

- Nodal type DOF
- Joint type DOF
- degree of kinematic indeterminacy (degrees of freedom) is defined as:
- the number of independent translations and rotations in a structure.

DOF $=1$

-in a truss, the joint rotation is not regarded as a degree of freedom. joint rotations do not have any physical significance as they have no effects in the members of the truss

- in a frame, degrees of freedom due to axial deformations can be neglected

Structure
 Kinematic Degree of Freedom

If the effect of the cantilever portion is considered as a joint load at the roller support on the far right, kinematic indeterminacy can be taken as 2.

Structure

6

Method of Consistent Deformation

Illustration of the method

(a)
(b)

Problem

侖

Deflection of released structure due to actual loads

$$
\Delta_{B}=\frac{5 w L^{4}}{384 E I}
$$

Deflection of released structure due to redundant applied as a load

$$
\text { Deflection due to } R_{B}=\frac{R_{B} I^{3}}{48 E I}
$$

$$
\begin{array}{ll}
\Delta_{B}=\frac{R_{B} L^{3}}{48 E I} & \text { Compatibility condition (or equation of } \\
\frac{5 w L^{4}}{384 E I}=\frac{R_{B} L^{3}}{48 E I} & \text { superposition or equation of geometry) }
\end{array}
$$

- A general approach (applying consistent sign convention for loads and displacements):
L^{3}
48EI
- Apply unit load corresponding to R_{B}

(e)

Let the displacement due to unit load
b Displacement due to R_{B} is $R_{B} \bar{\delta}_{B}$

$$
\begin{array}{cl}
\Delta_{B}=-\frac{5 w L^{4}}{384 E I} & \text { (Negative, since deflection is downward) } \\
\Delta_{B}+R_{B} \delta_{B}=0 & \text { (Compatibility condition) } \\
R_{B}=-\frac{\Delta_{B}}{\delta_{B}} &
\end{array}
$$

Example 1: Propped cantilever

Choose $\boldsymbol{V}_{\boldsymbol{B}}$ as the redundant

Released structure

Find deflection at B of the released structure

$$
\frac{-P l}{2 E I} \Delta_{B}=\frac{1}{2} \cdot \frac{-P L}{2 E I} \cdot \frac{l}{2}\left(\frac{1}{2}+\frac{2}{3} \cdot \frac{l}{2}\right)=\frac{-5 P l^{3}}{48 E I}
$$

Apply unit load on released structure corresponding to $\boldsymbol{V}_{\boldsymbol{B}}$ and find deflection at \boldsymbol{B}

$$
\Delta_{B}+R_{B} \delta_{B}=0 \quad R_{B}=\frac{-\Delta_{B}}{\delta_{B}}=\frac{5 P l^{3}}{48 E I} \cdot \frac{3 E I}{l^{3}}=\frac{5 P}{16}
$$

+ ve sign indicates that V_{B} is in the same direction of the unit load. i.e., in the upward direction.

Other reactions

Bending moment diagram

Example 2: Continuous beam

Choose V_{B} as the redundant

Released structure with unit load corresponding to $\boldsymbol{V}_{\boldsymbol{B}}$ (to find $\boldsymbol{\delta}_{\boldsymbol{B}}$)

$$
\begin{gathered}
\delta_{B}=\frac{l^{3}}{48 E I}=\frac{8^{3}}{48 E I}=\frac{10.667}{E I} \quad \begin{array}{l}
\text { (numerically) } \\
\text { (direction is same as } \Delta_{B} \text { i.e., downwards) }
\end{array} \\
\Delta_{B}+R_{B} \delta_{B}=0 \quad R_{B}=\frac{-\Delta_{B}}{\delta_{B}}=\frac{-73.333}{E I} \frac{E I}{10.667}=-6.875 \\
\mathrm{kNm}
\end{gathered}
$$

-ve sign indicates that V_{B} is in the opposite direction of the unit load. i.e., in the upward direction.

Other reactions

Bending moment diagram

To find $\Delta_{H A}$ and $\boldsymbol{\delta}_{H A}$ (using unit load method)

Portion	Origin	Limits	M	m	Mm	m^{2}
AB	A	$0-2$	0	x	0	x^{2}
BC	A	$2-4$	$-10(\mathrm{x}-2)$	x	$-10 \mathrm{x}^{2}+20 \mathrm{x}$	x^{2}
CD	A	$0-3$	-20	4	-80	16

$$
\begin{aligned}
\Delta_{H A} & =\int \frac{M m d x}{E I}=\int_{2}^{4} \frac{1}{E I}-10 x^{2}+20 x d x+\int_{0}^{3} \frac{1}{E I}-80 \\
\Delta_{H A} & =\frac{1}{E I}\left[-10 \frac{x^{3}}{3}+10 x^{2}\right]_{0}^{4}+\frac{1}{E I}\left[-80 \quad 0 \quad \frac{-306.6}{7 E I}\right.
\end{aligned}
$$

$$
\begin{gathered}
\delta_{H A}=\int \frac{m^{2} d x}{E I}=\int_{0}^{4} \frac{x^{2}}{E I} d x+\int_{0}^{3} \frac{16}{E I} d x=\left[\frac{x^{3}}{B E I}\right]_{0}^{4}+\left[\frac{T 6 x}{E I}\right]_{0}^{3}=\frac{69.33}{E I} \\
\Delta_{H A}+H_{A} \delta_{H A}=0 \quad H_{A}=-\frac{ब_{B}}{}=\frac{306.67}{E I} \cdot \frac{E I}{69.33}=4.423 \mathrm{kN}
\end{gathered}
$$

To find $\Delta_{H A}$ and $\boldsymbol{\delta}_{H A}$ (using unit load method)

Portion	Origin	Limits	M	m	Mm	m^{2}
AB	A	$0-2$	0	x	0	x^{2}
BC	A	$2-4$	$-30(\mathrm{x}-2)$	x	$-30 \mathrm{x}^{2}+60 \mathrm{x}$	x^{2}
CD	A	$0-6$	-60	4	-240	$\mathbf{1 6}$

$$
\begin{aligned}
& \Delta_{H A}=\int \frac{M m d x}{E I}=\int_{2}^{4} \frac{1}{E I}-30 x^{2}+60 x d x \int_{0}^{6} \frac{1}{2 E I}-240 \\
& \Delta_{H A}=\frac{1}{E I}\left[-10 x^{3}+30 x^{2}\right]_{2}^{4} \frac{1}{2 E I}[-240 x]=\frac{-92}{0 E I}
\end{aligned}
$$

$$
\begin{aligned}
& \delta_{H A}=\int \frac{m^{2} d x}{E I}=\int_{0}^{4} \frac{x^{2}}{E I} d x+\int_{0}^{6} \frac{16}{2 E I} d x=\left[\frac{x^{3}}{3 E I}\right]_{0}^{4}+\left[\frac{8 x}{E I}\right]_{0}^{6}=\frac{69.333}{E I} \\
& \Delta_{H A}+H_{A H A}=0 \quad H_{A}=\frac{-\Delta_{H A}}{\delta_{H A}}=\frac{920}{E I} \cdot \frac{E I}{69.333}=13.269 \mathrm{kN}
\end{aligned}
$$

Example 4: Two or more redundants

Choose $\boldsymbol{V}_{\boldsymbol{B}}$ and $\boldsymbol{V}_{\boldsymbol{c}}$ as the redundant

$$
E I \Delta_{B}=3420+8280+2325=14025 \quad E I \Delta_{C}=2790+8280+2850=13920
$$

$$
\begin{array}{cc}
\Delta_{B}+V_{B B B}+V_{C} \delta_{B C}=0 \Rightarrow 14025+96 V_{B}+84 V_{C}=0 \\
\Delta_{C}+V_{B} \delta_{C B}+V_{C} \delta_{C C}=0 \Rightarrow 13920+84 V_{B}+96 V_{C}=0 \\
V_{B}=-82 & V_{C}=-73.25 \\
k N & k N \\
V_{B}=82 \mathrm{kN}(\uparrow) & V_{C}=73.25 \mathrm{kN}(\uparrow) \\
V_{A}=19.25 \mathrm{kN}(\uparrow) \quad V_{D}=15.5 \mathrm{kN}(\uparrow)
\end{array}
$$

Clapeyron's theorem of three moments

1. Uniform loading

-

To find slopes at B using Conjugate Beam Method:

From span AB:

$$
\begin{aligned}
& \Rightarrow V_{B 1}=\frac{M_{A} l_{1}}{6 E I_{1}}+\frac{M_{B} l_{1}}{3 E I_{1}}+\frac{w_{1} l_{1}^{3}}{24 E I_{1}}=\theta_{B A}
\end{aligned}
$$

From span BC:

$$
\begin{aligned}
& V_{B 2} l_{2}=\left[\frac{1}{2} \cdot \frac{M_{B} l_{2}}{E I_{2}} \cdot \frac{l_{2}}{3}+\frac{1}{2} \cdot \frac{M_{c} l_{2}}{E I_{2}} \cdot \frac{2 l_{2}}{3}\right]+\left[\frac{2}{3} \cdot l_{2} \cdot \frac{w_{2} l_{2}^{2}}{8 E I_{2}} \cdot \frac{l_{2}}{2}\right] \\
\Rightarrow & V_{B 2}=\frac{M_{B} l_{2}}{2 E I_{2}}+\frac{M_{C} l_{2}}{6 F I_{2}}+\frac{w_{2} l_{2}^{3}}{2 A E I_{2}}=\theta_{B C}
\end{aligned}
$$

Deflected shape

$$
\begin{aligned}
\theta_{B A}+\theta_{B C} & =0 \Rightarrow \theta_{B A}= \\
& -\theta_{B C}
\end{aligned}
$$

$$
\Rightarrow \frac{M_{A} l_{1}}{K E I_{1}}+\frac{M_{B} l_{1}}{2 F I_{1}}+\frac{w_{1} l_{1}^{3}}{21 E I_{1}}=-\left(\frac{\left(M_{B} l_{2}\right.}{3 F I_{2}}+\frac{M_{C}}{\kappa F I_{2}}+\frac{w_{2} l_{2}^{3}}{2 N E I_{2}}\right)
$$

2. General loading

$$
\theta_{B A}=\frac{M_{A} l_{1}}{6 E I_{1}}+\frac{M_{B} l_{1}}{3 E I_{1}}+\frac{a_{1} x_{1}}{E I_{1} l_{1}}
$$

$$
\theta_{B C}=\frac{M_{B} l_{2}}{3 E I_{2}}+\frac{M_{C} l_{2}}{6 E I_{2}}+\frac{a_{2} x_{2}}{E I_{2} l_{2}}
$$

$\theta_{B A}=$
$-\theta_{B C}$
2. General loading with support settlement

$\theta_{B A}=\frac{M_{A} l_{1}}{6 E I_{1}}+\frac{M_{B} l_{1}}{3 E I_{1}}+\frac{a_{1} x_{1}}{E I_{1} l_{1}}+\frac{\delta_{A}-\delta}{l_{1}}$
$\theta_{B C}=\frac{M_{B} l_{2}}{3 E I_{2}}+\frac{M_{C} l_{2}}{6 E I_{2}}+\frac{a_{2} x_{2}}{E I_{2} l_{2}}+\frac{\delta_{C}-\delta}{l_{2}}$
$\theta_{B A}=$
$-\theta_{B C}$

Example 1:

$\boldsymbol{E I}$ is constant

$$
\begin{array}{cc}
\frac{M_{A} l_{1}}{E I_{1}}+2 M_{B}\left(\frac{l_{1}}{E I_{1}}+\frac{l_{2}}{E I_{2}}\right)+\frac{M_{C} l_{2}}{E I_{2}}=-\frac{w_{1} l_{1}^{3}}{4 E I_{1}}-\frac{w_{2} l_{2}^{3}}{4 E I_{2}} & l_{1}=l_{2} \\
4 M_{B}=\frac{2 w l^{2}}{4} & w_{1}=w_{2} \\
- & M_{A}=M_{C}=0 \\
\therefore M_{B}=\frac{w l^{2}}{8}=\frac{20 \times 4^{2}}{8}=-40 &
\end{array}
$$

Example 2:

Span ABC

$$
\begin{gather*}
l_{1}=l_{2} \quad E I_{1}=E I_{2} \quad M_{A}=0 \\
\frac{M_{A} l_{1}}{E I_{1}}+2 M_{B}\left(\frac{l_{1}}{E I_{1}}+\frac{l_{2}}{E I_{2}}\right)+\frac{M_{C} l_{2}}{E I_{2}}=-\frac{w_{1} l_{1}^{3}}{4 E I_{1}}-\frac{w_{2} l_{2}^{3}}{4 E I_{2}} \\
\Rightarrow M_{A}+4 M_{B}+M_{C}=0 \\
\Rightarrow \Delta M_{B}+M_{C}=0
\end{gather*}
$$

$$
\begin{aligned}
& l\left(M_{B}+4 M_{C}+M_{D}\right)=-\frac{6 a_{1}}{l}-\frac{6 a_{2}}{x_{2}} \frac{1}{l}
\end{aligned}
$$

$$
\begin{aligned}
& M_{B}+4 M_{C}=-\frac{3 W l}{8}
\end{aligned}
$$

$(1) \&(2) \longrightarrow M_{C}=\frac{-W}{10} \quad M_{B}=\frac{W l}{40}$

Gnan $A^{\prime \prime} A R$

$$
\begin{array}{lll}
w_{1}=0 \\
w_{2}=20 \mathrm{kN} / \mathrm{m} & M_{A^{\prime}}=0 & E I_{1}=E I_{2}
\end{array}
$$

$$
\frac{M_{A^{\prime}} l_{1}}{E I_{1}}+2 M_{A}\left(\frac{l_{1}}{E I_{1}}+\frac{l_{2}}{E I_{2}}\right)+\frac{M_{B} l_{2}}{E I_{2}}=-\frac{w_{1} l_{1}^{3}}{4 E I_{1}}-\frac{3}{4 E I_{2}}
$$

$$
\begin{align*}
2 M_{A} \times 6+M_{B} \times 6 & =\frac{20 \times 6^{3}}{4} \\
- & \tag{1}\\
2 M_{A}+M_{B} & =180
\end{align*}
$$

Span ABC

$$
\begin{array}{cl}
\frac{M_{A} l_{1}}{E I_{1}}+2 M_{B}\left(\frac{l_{1}}{E I_{1}}+\frac{l_{2}}{E I_{2}}\right)+\psi_{2} l_{2} \frac{M_{C} l_{2}}{E I_{2}}=-\frac{w_{1} \beta_{1}^{3}}{4 E I_{1}}-\frac{3}{4 E I_{2}} & w_{1}=w_{2}=20 \mathrm{kN} / \mathrm{m} \\
6 M_{A}+2 M_{B} \times 14=\frac{20 \times 6^{3}}{4}-\frac{20 \times 8^{3}}{4} & M_{C}=0 \\
3 M_{A}+14 M_{B}= & \text { (2) }
\end{array}
$$

$$
-1820
$$

(1) \& (2)
$M_{A}=-28$
$M_{B}=-124$
1- $\boldsymbol{N T m}_{1 m}$
$k N m$

Example 4 (Support settlement):

$E I$ is constant $\quad E I=26320 \mathrm{kNm}^{2} \quad \delta_{B}=\bar{\delta}_{C}=87 \mathrm{~mm}$
-

Span $A B C$

$$
\begin{gathered}
M_{A}=0 \quad E I_{1}=E I_{2}=E I \\
\frac{M_{A} l_{1}}{E I_{1}}+2 M_{B}\left(\frac{l_{1}}{E I_{1}}+\frac{l_{2}}{E I_{2}}\right)+\frac{M_{C} l_{2}}{E I_{2}}=\frac{w_{1} l_{1}^{3}}{4 E I_{1}}-\frac{w_{2} l_{2}^{3}}{4 E I_{2}}-\frac{6\left(\delta_{A}-\delta_{B}\right)}{l_{1}}-\frac{6\left(\delta_{C}-\delta_{B}\right)}{l_{2}} \\
\frac{1}{26320}\left(18 M_{B}+6 M_{C}\right)=-\frac{20 \times 3^{3}}{4 \times 26320}-\frac{20 \times 6^{3}}{4 \times 26320}-\frac{6(-0.087)}{3}-\frac{6}{6}
\end{gathered}
$$

$$
\begin{equation*}
3 M_{B}+M_{C}=560.78 \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \text { Span } B C D \\
& M_{D}=0 \\
& \frac{M_{B} l_{1}}{E I_{1}}+2 M_{C}\left(\frac{l_{1}}{E I_{1}}+\frac{l_{2}}{E I_{2}}\right)+\frac{M_{D} l_{2}}{E I_{2}}=\frac{w_{1} l_{1}^{3}}{4 E I_{1}}-\frac{w_{2} l_{2}^{3}}{4 E I_{2}}-\frac{6\left(\delta_{B}-\delta_{C}\right)}{l_{1}}-\frac{6\left(\delta_{D}-\delta_{C}\right)}{l_{2}} \\
& \frac{1}{26320} 6 M_{B}+18 M_{C}=\frac{20 \times 6^{3}}{4 \times 26320}-\frac{20 \times 3^{3}}{4 \times 26320}-\frac{6 \times 0}{6}-\frac{6(-0.087}{3} \\
& M_{B}+3 M_{C}=560.78 \quad(2) \tag{2}\\
& M_{B}=140.195 \mathrm{kNm} \quad M_{C}=140.195 \mathrm{kNm}
\end{align*}
$$

Alternatively, from symmetry, $\quad M_{B}=M_{C}$

$$
3 M_{B}+M_{C}=560.78 \Rightarrow 4 M_{B}=560.78 \Rightarrow M_{B}=140.195 \mathrm{kNm}
$$

Examples 5 (Fixed Beam)

$$
\frac{M_{A} l_{1}}{E I_{1}}+2 M_{B}\left(\frac{l_{1}}{E I_{1}}+\frac{l_{2}}{E I_{2}}\right)+\frac{M_{C} l_{2}}{E I_{2}}=-\frac{6 a_{1} x_{1}}{E I_{1} l_{1}}-\frac{6 a_{2}}{E I_{2} l_{2}}
$$

Span $A^{\prime} A B$

$$
\begin{array}{ll}
M_{A^{\prime}}=0 & \text { A } \begin{array}{ll}
E I_{1}=E I_{2} & \frac{P l}{4 E I}
\end{array} \quad \begin{array}{l}
a_{2}=\frac{1}{2} \cdot \frac{P l}{4} \cdot l \\
\end{array} \quad \Rightarrow 2 M_{A}+M_{B}=-\frac{6 P l}{16} \longrightarrow x_{2}=\frac{1}{2}
\end{array}
$$

Span $A B B^{\prime}$

$$
\begin{array}{r}
M_{B^{\prime}}=0 \quad E I_{1}=E I_{2} \quad a_{1}=\frac{P l^{2}}{8}, \quad x_{1}=\frac{l}{2} \\
\Rightarrow M_{A}+2 M_{B}=-\frac{6 P l}{16}
\end{array}
$$

$(1) \&(0) \longrightarrow M_{A}=M_{B}=-\frac{}{8}$

Examples 6 (Fixed Beam)

ENERGY PRINCIPLES BASED ON DISPLACEMENT FIELD

alternative forms of

Principle of Stationary Total Potential Energy (PSTPE)

When the displacement field in a loaded elastic structure is given a small and arbitrary perturbation, maintaining compatibility and without disturbing the associated force field, then the first variation of the total potential energy is equal to zero, if the forces are in a state of static equilibrium.

Alternative form of Principle of Stationary Total Potential Energy (PSTPE)

The total potential energy $п$ in a loaded elastic structure expressed as a function of n independent displacements $D_{1}, D_{2}, \ldots D_{n}$ in a compatible displacement field must be rendered stationary, with the partial derivative of Π with respect to every D_{j} being equal to zero, if the associated force field is to be in a state of static equilibrium.

When the displacement field in a loaded linear elastic structure is given a small and arbitrary perturbation, maintaining compatibility and without disturbing the associated force field, then the first variation of the total potential energy is equal to zero, if the forces are in a state of static equilibrium.

Castigliano's Theorem (Part I)

If the strain energy, U , in an elastic structure, subject to a system of external forces in static equilibrium, can be expressed as a function of n independent displacements $D_{1}, D_{2}, \ldots D_{n}$ satisfying compatibility, then the partial derivative of U with respect to every D_{j} will be equal to the value of the conjugate force, F_{j}.

Princinle of Stationary Total Comnlementary Potential Enerov (PSTCPE)

When the force field in a loaded elastic structure is given a small and arbitrary perturbation, maintaining equilibrium compatibility and without disturbing the associated displacement field, then the first variation of the total complementary potential energy is equal to zero, if the displacements satisfy compatibility.

Alternative form of Principle of Stationary Total Complementary Potential Energy (PSTCPE)

The total complementary potential energy Π^{*} in a loaded elastic structure expressed as a function of n independent forces F_{1}, F_{2}, \ldots F_{n} in a statically admissible force field must be rendered stationary, with the partial derivative of Π^{*} with respect to every F_{j} being equal to zero, if the associated displacement field is to satisfy compatibility. (PMTCPE)

When the force field in a loaded linear elastic structure is given a small and arbitrary perturbation, maintaining equilibrium compatibility and without disturbing the associated displacement field, then the first variation of the total complementary potential energy is equal to zero, if the displacement satisfy compatibility.

If the complementary strain energy, U^{*}, in an elastic structure, with a kinematically admissible displacement field, is expressed as a function of n independent external forces $F_{1}, F_{2}, \ldots F_{n}$ satisfying equilibrium, then the partial derivative of U^{*} with respect to every F_{j} will be equal to the value of the conjugate displacement, D_{j}.

If the behaviour is linear elastic, U^{*} can be replaced by U .

Thus, Castigliano's Theorem (Part II) can otherwise be stated as:
"If U is the total strain energy in a linear elastic structure due to application of external forces $F_{1}, F_{2}, F_{3}, \ldots F_{n}$ at points $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ respectively in the directions $A X_{1}, A X_{2}, A X_{3}, \ldots, A X_{n}$ then the displacements at points $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ respectively in the directions $A X_{1}, A X_{2}, A X_{3}, \ldots, A X_{n}$ are $\partial \mathrm{U} / \partial F_{1}, \partial \mathrm{U} / \partial F_{2}, \partial \mathrm{U} / \partial F_{3,}, \ldots, \partial \mathrm{U} / \partial F_{n}$ respectively."

Proof for Castigliano's theorem (Part II)

Let $x_{1}, x_{2}, x_{3}, \ldots x_{\mathrm{n}}$ be deflections at points $A_{1}, A_{2}, A_{3}, \ldots A_{\mathrm{n}}$ due to $F_{1}, F_{2}, F_{3}, \ldots F_{\mathrm{n}}$
Total strain energy, $U=\frac{1}{2} F_{1} x_{1}+\frac{1}{2} F_{2} x_{2}+\frac{1}{2} F_{3} x_{3}+\ldots+\frac{1}{2} F_{n} x_{n}$
Let the load F_{1} alone be increased by δF_{1}
Let $\delta x_{1}, \delta x_{2}, \delta x_{3} \ldots, \delta x_{n}$ be the additional deflections at points $A_{1}, A_{2}, A_{3}, \ldots A_{n}$ Increase in strain energy,

$$
\begin{aligned}
& \delta U=\left(F_{1}+{ }_{\delta}^{1}{ }_{1}\right) \delta x_{1}+F_{2} \delta x_{2}+F_{3} \delta x_{3}+\ldots+F_{n} \delta x_{n} \\
& \delta U=F_{1} \delta x_{12}+F_{2} \delta x_{2}+F_{3} \delta x_{3}+\ldots+F_{n} \delta x_{n}, \text { neglecting small quantities. }
\end{aligned}
$$

Let $\quad\left(F_{1}+\delta F_{1}\right), F_{2}, F_{3} \ldots, F_{n} \quad$ are acting on the original structure

Total strain energy,
$U+\delta U=\frac{1}{2}\left(F_{1}+\delta F_{1}\right)\left(x_{1}+\delta x_{1}\right)+\frac{1}{2} F_{2}\left(x_{2}+\delta x_{2}\right)+\frac{1}{2} F_{3}\left(x_{3}+\delta x_{3}\right)+\ldots+\frac{1}{2} F_{n}\left(x_{n}+\delta x_{n}\right)$
$(1) \longrightarrow \quad U=\frac{1}{2} F_{1} x_{1}+\frac{1}{2} F_{2} x_{2}+\frac{1}{2} F_{3} x_{3}+\ldots+\frac{1}{2} F_{n} x_{n}$
$(3)-(1) \longrightarrow \delta U=\frac{1}{2} x_{1} \bar{\delta} F_{1}+\left(\begin{array}{l}\frac{1}{2} F_{1} \delta x_{1}+{ }_{2}^{1} F_{2} \delta x_{2}+\ldots+{ }_{2}^{1} F{ }_{n} x_{n} x_{n}\end{array}\right)$

$$
\begin{equation*}
2 U=x_{1} \delta F_{1}+F_{1} \delta x_{1}+F_{2} \delta x_{2}+\ldots+F_{n} \delta x_{n} \tag{4}
\end{equation*}
$$

$(2) \longrightarrow \delta U=F_{1} \delta x_{1}+F_{2} \delta x_{2}+F_{3} \delta x_{3}+\ldots+F_{n} \delta x_{n}$

$$
(4)-(2) \longrightarrow \delta U=x_{1} \delta F_{1}
$$

$$
\begin{aligned}
& \delta U=x_{1} \quad \text { When } \delta F_{1} \rightarrow 0, \frac{\partial U}{\partial F_{1}}=x_{1} \\
& \delta F_{1} \\
& \text { Similarly, } x_{2}=\frac{\partial U}{\partial F_{2}}, x_{2}=\frac{\partial U}{\partial F_{3}}, \ldots x_{n}=\frac{\partial U}{\partial F_{n}}
\end{aligned}
$$

For example, in the case of bending,

$$
\begin{aligned}
U & =\int\left(\frac{M^{2}}{2 E I}\right) d x \\
\therefore \delta & =\frac{\partial U}{\partial F}=\int\left(\frac{M}{E I}\right) \frac{\partial M}{\partial F} d x
\end{aligned}
$$

Example 1: Using Castigliano's Theorem, analvse the continuous beam shown in figure.

Let $\boldsymbol{R}_{\boldsymbol{B}}$ be the redundant.

From \boldsymbol{A} to $\boldsymbol{B}, \quad M_{x}=\left(\begin{array}{ll}w L & \frac{R_{B}}{2}\end{array}\right) x \quad \frac{w x^{2}}{2}$

$$
\delta_{B}=0 \quad \Rightarrow \frac{\partial U}{\partial R_{B}}=\int\left(\frac{M}{E I}\right) \frac{\partial M}{\partial R_{B}} d x=0
$$

$\frac{\partial M}{\partial R_{B}}=\frac{=}{2}$
For the entire span $A C$
$\therefore \int\left(\frac{M}{E I}\right)^{\frac{\partial M}{\partial R}}{ }_{B}^{\partial M} d x=0 \Rightarrow \frac{2}{E I} \int\left(w L x \quad \frac{R_{B} x}{x_{2}}-\frac{w x^{2}}{2}\right) \frac{-}{2} d x=0$

$$
\Rightarrow \quad R_{B}=\frac{5 w L}{4}
$$

Example 2: Using Castigliano's Theorem, analyse the frame shown in figure.

Let $\boldsymbol{H}_{\boldsymbol{A}}$ be the redundant.

$$
\frac{\partial M}{\partial H_{A}}=-
$$

$$
\begin{aligned}
& 3 \mathrm{kN} / \mathrm{m} \\
& \text { From } A \text { to } B \text {, } \\
& M_{x}=-H_{A} \\
& { }^{x} \partial M \\
& H_{A} \\
& H_{A} V_{D}=3-\frac{H}{2} \\
& V_{A}=3+\frac{H_{A}}{2} \\
& \text { From } B \text { to } C \text {, } \\
& M_{x}=\left(3+\frac{H_{A}}{2}\right) x-2 H_{A} \quad \frac{3 x^{2}}{2} \\
& \frac{\partial M}{\partial H_{A}}=\frac{\bar{x}}{2}-
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \int\left(\frac{M}{E I}\right) \frac{\partial M}{\partial H_{A}} d x=0 \\
& \left.\Rightarrow \frac{1}{E I}\left\{\left(-H_{A} x\right)(-x) d x+\int_{0}^{2}\left(3 x+\frac{H_{A} x}{2}-2 H_{A} \frac{3 x^{2}}{2}\right)\left(\frac{x}{2}-2\right)\right\} d x+\int_{0}^{1}\left(-H_{A} x\right)(-x) d x\right\}= \\
& \left.\left[\frac{H_{A} x^{3}}{3}\right]_{0}^{2}+\frac{\mathbb{x}^{3}}{2}+\frac{H_{A} x^{3}}{12}-\frac{H_{A} x^{2}}{2}-\frac{3 x^{4}}{16}-3 x^{2}-\frac{H_{A} x}{2}+4 H_{A} x+x^{3}\right]_{0}^{2}+\left[\frac{H_{A} x^{3}}{3}\right]_{0}=0 \\
& \left.\frac{8 H_{A}}{3}+\frac{8}{\frac{1}{2}}+\frac{8 H_{A}}{12}-\frac{4 H}{2}-3-12-{ }_{A}+8 H_{A}+8\right]+\frac{H_{A}}{3}=0 \\
& H_{A}=0.39 \mathrm{kN} \\
& V_{A}=3+\frac{H_{A}}{2}=3.19 \mathrm{kN} \\
& \begin{array}{l}
V_{D}=3-\frac{H_{A}}{k N}=2.8 \\
k N \text { 榾 }^{2}
\end{array}
\end{aligned}
$$

Example 4: Using Castigliano's Theorem, analyse the truss shown in figure. $A E$ is constant.

Example 4: Do the above problem using the method of consistent deformation.

$$
\begin{gathered}
T=-\frac{\sum \frac{P^{\prime} k L}{A E}}{\sum \frac{k^{2} I}{A E}} \\
P=P^{\prime}+k T
\end{gathered}
$$

Note 1: If there are two internal redundants in a truss, in method of consistent deformation,

$$
\begin{aligned}
& \sum \frac{P^{\prime} k_{1} L}{A E}+T_{1} \sum \frac{k_{1}^{2} L}{A E}+T_{2} \sum \frac{k_{1} k_{2} L}{A E}=0 \\
& \sum \frac{P^{\prime} k_{2} L}{A E}+T_{1} \sum \frac{k_{1} k_{2} L}{A E}+T_{2} \sum \frac{k_{2}^{2} L}{A E}=0
\end{aligned}
$$

Note 2: If there are both internal redundants external redundants in a truss, in method of consistent deformation,

$$
\begin{aligned}
& \sum \frac{P^{\prime} k_{1} L}{A E}+T_{1} \sum \frac{k_{1}^{2} L}{A E}+V_{B} \sum \frac{k_{1} k_{B} L}{A E}=0 \\
& \sum \frac{P^{\prime} k_{B} L}{A E}+T_{1} \sum \frac{k_{1} k_{B} L}{A E}+V_{B} \sum \frac{k_{B}^{2} L}{A E}=0
\end{aligned}
$$

Example 3: Using Castigliano's Theorem, analyse the pin-jointed truss shown in figure.

Internally indeterminate to degree 1.
Take force in $\mathbf{B D}$ as redundant.

Assume force in $\boldsymbol{B D}$ is \boldsymbol{T}

$$
\sum P \cdot \frac{\partial P}{\partial T} \cdot \frac{L}{A E}=0
$$

$$
\begin{aligned}
& F_{A D} \cos 45=F_{C D} \sin 53.13 \\
& F_{A D} \cos 45+F_{C D} \cos 53.13+T=80 \\
& F_{C D} \sin 53.13+F_{C D} \cos 53.13+T=80 \\
& 64.64 \text { T } \\
& 0.808 T \\
& F_{C D}=57.14- \\
& \underset{\substack{F_{A D} \\
F_{0.808 T}}}{0.714 T}(57.14-0.714 T) \frac{\sin 53.13}{\cos 45}=64.64- \\
& 0.808 T \\
& \sum P \cdot \frac{\partial P}{\partial T} \cdot \frac{L}{A E}=0 \\
& \left.\left(\frac{4.243}{(57.14-0.714 T)}\right) \int_{0}^{500 E} \times(-0.714)+\frac{(3 T}{400 E}\right) \times 3+(\underline{\underline{f}(64.64-0.808 T)} 4400 E(-0.808)=
\end{aligned}
$$

Statically and kinematically indeterminate structures

- Degree of static indeterminacy, Degree of kinematic indeterminacy, Force and displacement method of analysis

Force method of analysis

- Method of consistent deformation-Analysis of fixed and continuous beams
- Clapeyron's theorem of three moments-Analysis of fixed and continuous beams
- Principle of minimum strain energy-Castigliano's second theoremAnalysis of beams, plane trusses and plane frames.

